
Continuous Renal Replacement Therapy (CRRT): Fluid balance and composition

Rinaldo Bellomo
The University of Melbourne
Melbourne
Australia

The risks of fluid overload

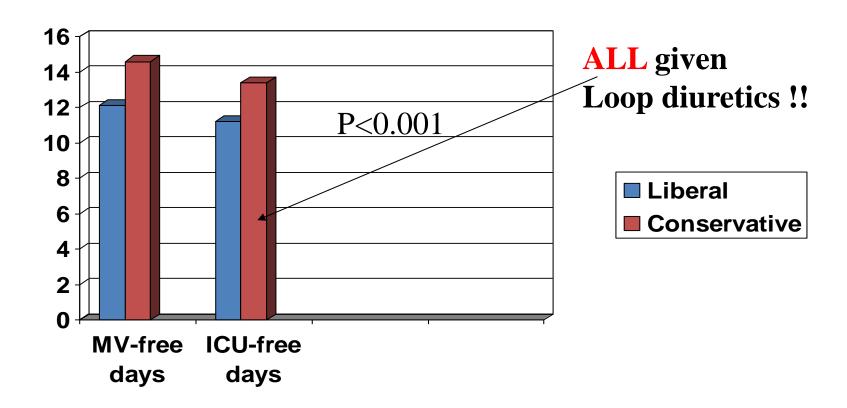
Reference	Study type	Population	n	Average fluid balance in less-positive group	Average fluid balance in more-positive group	Renal function measure	Renal outcome with more- restrictive fluid balance strategy	Principal outcome with more-restrictive fluid balance strategy
ARDS Clinical Trials Network (2006) ⁸⁸	Multicenter RCT	ARDS	1,000	–136 ml on day 7	+6,992 ml on day 7	Need for RRT; change in creatinine	No difference	Shorter duration of ventilation and ICU stay
Martin <i>et al.</i> (2005) ⁸⁶	Single-center RCT	Mixed ALI	40	–5,480 ml on day 5	–1,490 ml on day 5	Change in creatinine	No difference	Improved oxygenation
Martin et al. (2002) ⁸⁵	Single-center RCT	ALI after trauma	37	–3,300 ml on day 5	+500 ml on day 5	Change in creatinine	No difference	Improved oxygenation
Mitchell et al. (1992) ¹²⁷	Single-center RCT	Mixed ICU needing PAC	102	+142ml	+2,239ml	Change in creatinine	Small rise in creatinine	Shorter duration of ventilation and ICU stay
Bouchard et al. (2009) ²⁵	Retrospective observational	Mixed ICU with AKI	542	<10% rise	>10% rise	Dialysis independence	Improved	Decrease in mortality
Payen <i>et al.</i> (2008) ⁶	Retrospective observational	Mixed ICU with or without AKI	3,147	–1,000 ml	+3,000 ml	Renal SOFA score	Improved	Decrease in mortality in patients with AKI
Vidal et al. (2008) ⁷²	Prospective observational	Mixed ICU with elevated or normal IAP	83	+5,000ml	+9,000 ml	Renal SOFA score	Improved	Normal IAP associated with less organ failure and shorter ICU stay
Adesanya et al. (2008) ¹²⁸	Retrospective observational	Surgical ICU	41	+5 kg	+8.3 kg	Change in creatinine	No difference	Shorter duration of ventilation and ICU stay
McArdle et al. (2007) ⁸⁷	Retrospective observational	Surgical ICU	100	+7,500ml	+10,000 ml	Change in creatinine	No difference	Decrease in postoperative complications
Arlati <i>et al.</i> (2007) ⁹⁹	Prospective observational	Burns ICU	24	+7,500ml	+12,000 ml	Urine output	No difference	Decrease in organ dysfunction score

^{*}See Supplementary Information online for systematic search strategy. Abbreviations: AKI, acute kidney injury; ALI, acute lung injury; ARDS, acute respiratory distress syndrome; IAP, intra-abdominal pressure; ICU, intensive care unit; PAC, pulmonary artery catheter; RCT, randomized, controlled trial; RRT, renal replacement therapy; SOFA, sequential organ failure assessment.

Positive fluid balance looks bad!

Why we might actually need to remove fluid

- Sustained oliguria leads to fluid overload due to obligatory fluid intake in ICU
- Fluid, acid-base, potassium management is much easier if urine output is maintained
- Fluid overload is a real problem
- Let me show you.



The "FACTTs"

- NEJM 2006; 354: 1-12
- Comparison of two fluid-management strategies in acute lung injury
- NB: Pneumonia + sepsis >80% of patients
- 503 = conservative strategy
- 497 = liberal strategy

Liberal vs. conservative fluid use

NB: need for RRT 2.8 vs. 1.9% (p=0.06) Mortality 28.4 vs. 25.5%. All in favour of "dry"

CJASN ePress. Published on March 10, 2011 as doi: 10.2215/CJN.08781010

Fluid Balance, Diuretic Use, and Mortality in Acute Kidney Injury

Morgan E. Grams,** Michelle M. Estrella,* Josef Coresh,***, Roy G. Brower,* and Kathleen D. Liu[§] for the National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network

Post-hoc analysis

Clin J Am Soc Nephrol. 2011 May;6(5):966-73.

- Aim: explore association b/w FB, diuretics and mortality in AKI patients from FACTT
- 306 of 1000 patients developed AKI in first 2 days
- Post AKI Fluid Balance was significantly associated with mortality...higher frusemide doses had a protective effect which was no longer significant after correction for fluid balance.
- Conclusion: Post AKI diuretic therapy was associated with better 60-days survival – this appeared mediated by more negative fluid balance

Table 3. Relative odds of death by FACTT study day 60 associated with average daily fluid balance and furosemide dose following AKI

	Fluid Baland (Post-AKI, in Mean		Furosemide Dose (Post-AKI, in Mean 100 mg/Day)	
Adjustment	OR (95% CI)	P	OR (95% CI)	P
None (univariate)	1.73 (1.47 to 2.03)	< 0.001	0.38 (0.23 to 0.63)	< 0.001
Full model ^a	1.61 (1.29 to 2.00)	< 0.001	0.54 (0.31 to 0.94)	0.028
+Post-AKI fluid balance			0.73 (0.42 to 1.26)	0.255
+Post-AKI furosemide dose	1.56 (1.25 to 1.95)	< 0.001		
Final model ^b	1.61 (1.32 to 1.96)	< 0.001	0.48 (0.28 to 0.81)	0.007

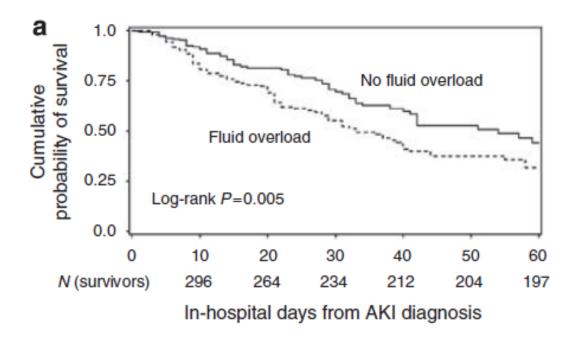
^aFull model includes adjustment for the following covariates: age, sex, race, fluid-strategy randomization group, catheter randomization group, day first diagnosed with AKI, fluid balance in the 24 hours prior to randomization, enrollment APACHE III score, sepsis as an etiology for ALI, trauma as an etiology for ALI, pneumonia as an etiology for ALI, multiple transfusions as an etiology for ALI, other etiology for ALI, baseline CVP, baseline presence or absence of shock, use of diuretics in the 24 hours prior to randomization, stage of AKI within 2 study days of randomization (AKIN creatinine-based criteria), mean daily CVP, and mean daily presence or absence of shock. The statistically significant covariates in the full model were race, age, day first diagnosed with AKI, and fluid-strategy randomization group.

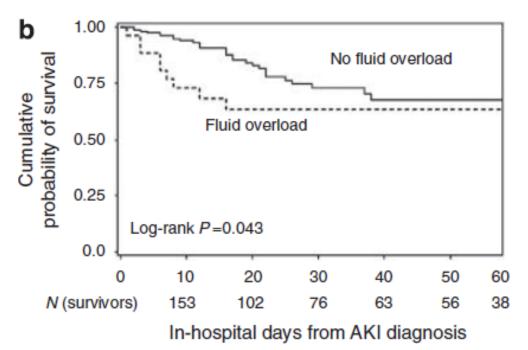
^bFinal model includes adjustment for the following covariates: age, race, sex, fluid-strategy randomization arm, catheter randomization arm, enrollment APACHE III score, day first diagnosed with AKI, mean daily CVP, and mean daily presence or absence of shock. The statistically significant covariates in the final model were race, age, day first diagnosed with AKI (with mean fluid balance only), fluid-strategy randomization group (with mean fluid balance only), enrollment APACHE III score, mean daily CVP (with mean furosemide dose only), and mean daily presence or absence of shock.

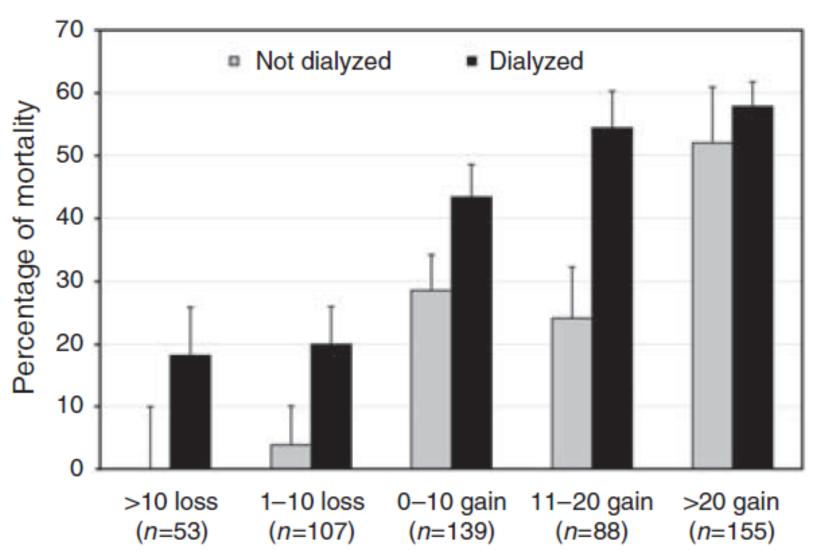
Positive fluid balance is bad in AKI

original article

http://www.kidney-international.org


© 2009 International Society of Nephrology


Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury


Josée Bouchard¹, Sharon B. Soroko¹, Glenn M. Chertow², Jonathan Himmelfarb³, T. Alp Ikizler⁴, Emil P. Paganini⁵ and Ravindra L. Mehta¹, Program to Improve Care in Acute Renal Disease (PICARD) Study Group

¹Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA; ²Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA;
³Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA;
⁴Division of Nephrology, Department of Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA

Percentage of fluid accumulation relative to baseline

Research

A positive fluid balance is associated with a worse outcome in patients with acute renal failure

Didier Payen¹, Anne Cornélie de Pont², Yasser Sakr³, Claudia Spies⁴, Konrad Reinhart³, Jean Louis Vincent⁵ for the Sepsis Occurrence in Acutely III Patients (SOAP) Investigators

Corresponding author: Anne Cornélie de Pont, a.c.depont@amc.uva.nl

Received: 14 Feb 2008 Revisions requested: 17 Mar 2008 Revisions received: 20 May 2008 Accepted: 4 Jun 2008 Published: 4 Jun 2008

Critical Care 2008, 12:R74 (doi:10.1186/cc6916)

Table 2

Hazard ratios: results of multivariate Cox regression analysis for 60-day mortality in critically ill patients with acute renal failure

Characteristic	Hazard ratio	95% CI	P value
Age	1.02	1.01-1.03	<0.001
SAPS II (per point)	1.03	1.02-1.04	<0.001
Heart failure	1.38	1.05-1.81	0.02
Medical admission	1.68	1.35-2.08	<0.001
Mean fluid balance, L/24 hours	1.21	1.13-1.28	<0.001
Mechanical ventilation	1.55	1.14-2.11	<0.001
Liver cirrhosis	2.73	1.88-3.95	<0.001

¹Department of Anesthesiology and Intensive Care, CHU Lariboisière, 2, rue Ambroise - Paré, F-75475 Paris Cedex 10, France

²Adult Intensive Care Unit C3-327, Academic Medical Center, University of Amsterdam, Meibergdreef 9, NL-1105 AZ Amsterdam, The Netherlands

³Department of Anesthesiology and Intensive Care, Friedrich-Schiller-University Jena, Erlanger Allee 101, D-07747 Jena, Germany

⁴Department of Anaesthesiology and Intensive Care, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, D-12200 Berlin, Germany

⁵Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, 808, Route de Lennik, B-1070-Brussels, Belgium

An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial*

The RENAL Replacement Therapy Study Investigators

Objective: To examine associations between mean daily fluid balance during intensive care unit study enrollment and clinical outcomes in patients enrolled in the Randomized Evaluation of Normal vs. Augmented Level (RENAL) replacement therapy study.

Design: Statistical analysis of data from multicenter, randomized, controlled trials.

Setting: Thirty-five intensive care units in Australia and New Zealand.

Patients: Cohort of 1453 patients enrolled in the RENAL study. Interventions: We analyzed the association between daily fluid balance on clinical outcomes using multivariable logistic regression, Cox proportional hazards, time-dependent analysis, and repeated measure analysis models.

Measurements and Main Results: During intensive care unit stay, mean daily fluid balance among survivors was -234 mL/day compared with +560 mL/day among nonsurvivors (p < .0001). Mean cumulative fluid balance over the same period

was -1941 vs. +1755 mL (p=.0003). A negative mean daily fluid balance during study treatment was independently associated with a decreased risk of death at 90 days (odds ratio 0.318; 95% confidence interval 0.24-0.43; p<.000.1) and with increased survival time (p<.0001). In addition, a negative mean daily fluid balance was associated with significantly increased renal replacement-free days (p=.0017), intensive care unitfree days (p<.0001), and hospital-free days (p=.01). These findings were unaltered after the application of different statistical models.

Conclusions: In the RENAL study, a negative mean daily fluid balance was consistently associated with improved clinical outcomes. Fluid balance may be a target for specific manipulation in future interventional trials of critically ill patients receiving renal replacement therapy. (Crit Care Med 2012; 40: 1753–1760)

KEY WORDS: acute kidney injury; continuous renal replacement therapy; hemodialysis; hemofiltration; intensive care; kidney

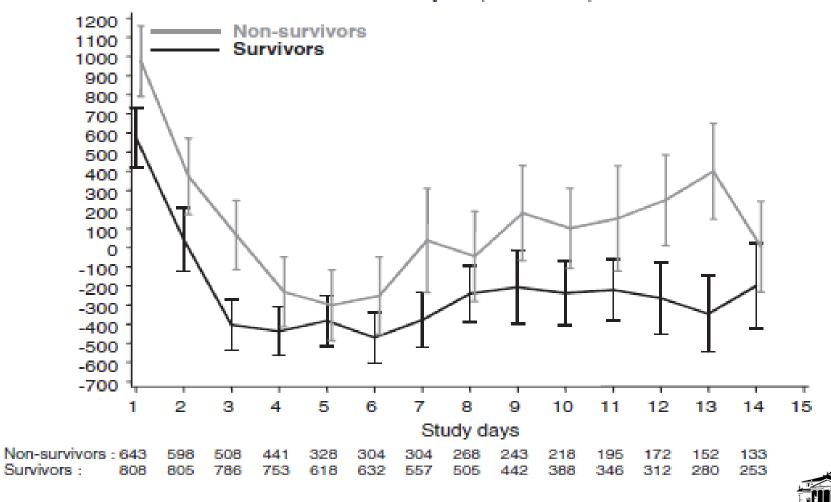
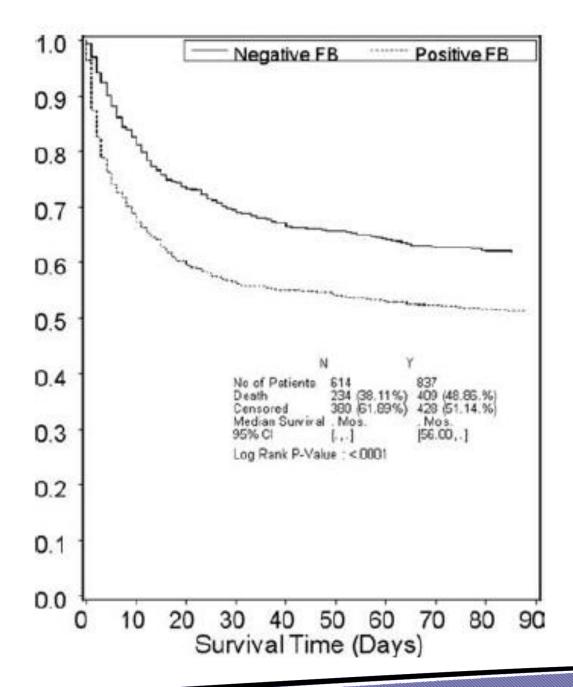


Table 2. Daily and cumulative fluid balance according to survival status at 90 days after randomization

Fluid Balance, No. of Patients, Mean, sp, Quartile Median, Quartile 3 Days With Missing Data	1 Nonsurvivors	Survivors	p^a
Mean daily FB during time in ICU ^a	644	808	<.0001
	560.0 (1494)	-234 (852)	
	$-274\ 305.2\ 1116$	-738 - 226 254.9	
	10	2	
Weight-adjusted mean daily FB during time in ICI	J 644	808	<.0001
	7.2 (19.1)	-2.7(10.8)	
	-3.6, 4.0 14.3		
	10	2	
Mean cumulative FB during time in ICU	644	808	<.0001
	1755 (9061)	-1941 (11,000)	
	-2310, 1518, 5922	2 - 6863, -1928, 2240	
	10	2	
Weight-adjusted mean cumulative FB during time in ICU	644	808	<.0001
	22.5 (119)	-22.3(131)	
		-85.0, -23.6, 28.4	
	10	2	



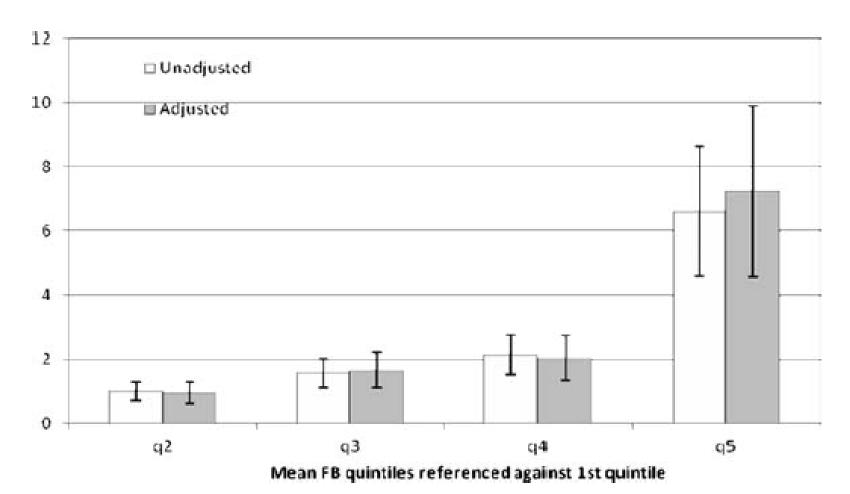


Table 3. Multivariable logistic regression with death at 90 days after randomization as outcome^a

Variable	Effect (Discrete Variable)	Odds Ratio	95% Confidence Interval	р
Negative mean daily fluid balance during index admission to intensive care unit ^b	No vs. yes	0.318	0.24-0.43	<.0001
Age		1.033	1.02-1.04	<.0001
Time from intensive care unit admission to randomization (d)		1.002	1.00-1.04	0.0065
Acute Physiology and Chronic Health Evaluation III score	I	1.012	1.01-1.02	0.0002
Sequential Organ Failure Assessment liver (score) International normalized ratio for prothrombin time	e	1.224 1.277	1.07-1.40 1.08-1.51	$0.0033 \\ 0.0047$

^aOnly variables with p < .05 presented; ^bdata collected to a maximum of 28 days.

37th Vicenza Course on AKI & CRRT - May 28-30, 2019

Table 4. Multivariable linear regression with renal replacement therapy-free days as outcome

Variable	Estimates	Standard Error	p
Intercept	-142.02968	80.90755	.0800
Positive mean daily fluid balance during index intensive care unit admission*	-4.29606	1.35909	.0017
Patients weight (kg)	0.07610	0.03859	.0493
Time from intensive care unit admission to randomization (days)	-0.01299	0.00485	.0077
Overall Sequential Organ Failure Assessment score (all nonmissing organ scores lumped together/5)	-3.68006	1.19039	.0021
Chloride (mmol/L)	0.35592	0.12614	.0050
рН	20.81819	10.26559	.0432

Only variables with p < .05 presented.

RESEARCH Open Access

Net ultrafiltration intensity and mortality in critically ill patients with fluid overload

Raghavan Murugan^{1,2,7*}, Vikram Balakumar^{1,2}, Samantha J. Kerti², Priyanka Priyanka^{1,2}, Chung-Chou H. Chang^{1,2,3,4}, Gilles Clermont², Rinaldo Bellomo⁵, Paul M. Palevsky^{1,3,6} and John A. Kellum^{1,2}

Abstract

Background: Although net ultrafiltration (UF^{NET}) is frequently used for treatment of fluid overload in critically ill patients with acute kidney injury, the optimal intensity of UF^{NET} is unclear. Among critically ill patients with fluid overload receiving renal replacement therapy (RRT), we examined the association between UF^{NET} intensity and risk-adjusted 1-year mortality.

Methods: We selected patients with fluid overload ≥ 5% of body weight prior to initiation of RRT from a large academic medical center ICU dataset. UF^{NET} intensity was calculated as the net volume of fluid ultrafiltered per day from initiation of either continuous or intermittent RRT until the end of ICU stay adjusted for patient hospital admission body weight. We stratified UF^{NET} as low (≤ 20 ml/kg/day), moderate (> 20 to ≤ 25 ml/kg/day) or high (> 25 ml/kg/day) intensity. We adjusted for age, sex, body mass index, race, surgery, baseline estimated glomerular filtration rate, oliguria, first RRT modality, pre-RRT fluid balance, duration of RRT, time to RRT initiation from ICU admission, APACHE III score, mechanical ventilation use, suspected sepsis, mean arterial pressure on day 1 of RRT, cumulative fluid balance during RRT and cumulative vasopressor dose during RRT. We fitted logistic regression for 1-year mortality, Gray's survival model and propensity matching to account for indication bias.

Table 2 Fluid balance, RRT characteristics and outcomes by intensity of net ultrafiltration

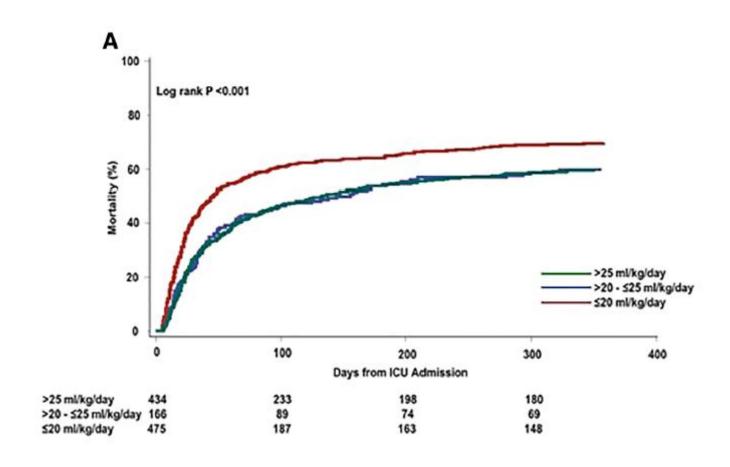

	≤ 20 ml/kg/day (n = 475)	> 20 to ≤ 25 ml/kg/day (n = 166)	> 25 ml/kg/day (n = 434)	p value
Fluids administered in the first 24 h of ICU admission (L), median (IQR)	5.3 (3.5–7.9)	5.1 (3.6- 7.8)	5.23 (3.3–8.1)	0.88
Fluid balance after ICU admission (L), median (IQR)				
At 72 h	7.9 (4.4–12)	7.8 (4.7–13.3)	7.6 (4.7–11.6)	0.71
At 7 days	10.1 (6.7–15.2)	10.5 (6.4–15.7)	10.1 (6.4–15.1)	0.78
Average before RRT	2.3 (1.2-4.4)	2.7 (1.5-4.3)	2.3 (1.2-4.2)	0.33
Cumulative before RRT (%)	15.6 (10-25)	17.3 (9.9–28.6)	21 (12.4–33.7)	< 0.001
Duration from ICU admission to RRT (days), median (IQR)	7 (2–13)	5 (3–12)	6 (3–16)	0.27
RRT duration (days), median (IQR)	4.7 (1.5–11.7)	8.7 (4.5-16.7)	7 (3.1–12.7)	< 0.001
Cumulative FB excluding UF ^{NET} for duration of RRT (L), median (IQR) ^a	13.5 (4.2–32.8)	22 (8.9–45.1)	19 (7.3–37.2)	< 0.001
MAP for duration of RRT (mmHg), mean (SD)	75.2 (0.6)	77.4 (0.8)	80.1 (0.53)	< 0.001
Cumulative vasopressor dose for duration of RRT (NE), median (IQR) ^a	15.7 (4.3–38.6)	11.4 (1.2–34.7)	8.1 (0.9–25.7)	< 0.001
First RRT modality				
IHD	121 (25.5)	52 (31.3)	127 (29.3)	0.25
CRRT	354 (74.5)	114 (68.7)	307 (70.7)	

Table 2 Fluid balance, RRT characteristics and outcomes by intensity of net ultrafiltration

	≤ 20 ml/kg/day (n = 475)	> 20 to ≤ 25 ml/kg/day (n = 166)	> 25 ml/kg/day (n = 434)	p value
	((
CRRT duration (days), median (IQR)	3.9 (1.5–7.7)	5.8 (3.6–9.4)	5.9 (2.8–9.5)	< 0.001
UF ^{NET} volume during CRRT (L), median (IQR)	3.4 (0.9–10.2)	11.6 (5.4–19.2)	16.2 (7.5–28.4)	< 0.001
IHD duration (days), median (IQR)	2 (5–9)	7 (3–13)	4 (2–8)	0.004
UF ^{NET} volume during IHD (L), median (IQR)	5.5 (2.2–13.5)	12.6 (4.4–19.7)	9.2 (4–17.2)	< 0.001
Both CRRT and IHD duration (days), median (IQR)	14.7 (9.7–22.9)	15.2 (9.2–21.9)	10.7 (6.9-18.4)	< 0.001
UF ^{NET} volume during CRRT and IHD (L), median (IQR)	19.5 (9.5-33.9)	27.9 (18.5-42.1)	26.6 (17.8-46.1)	< 0.001
Hospital length of stay (days), median (IQR)	32 (17–54)	37.5 (23-65)	37 (23-61)	< 0.001
Hospital mortality	272 (57.3)	70 (42.2)	187 (43.1)	< 0.001
1-year mortality	331 (69.7)	100 (60.2)	258 (59.4)	0.003
Renal recovery at 1 year ^b	119 (25.1)	48 (28.9)	138 (31.8)	0.078

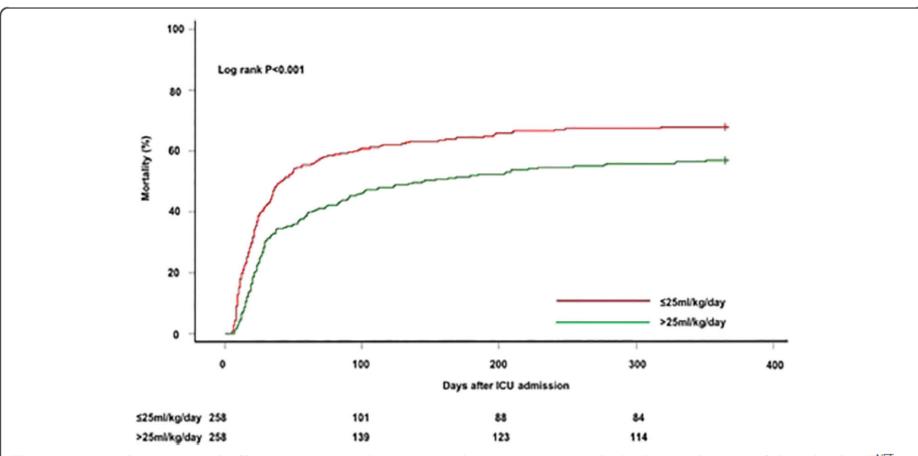


Fig. 2 Association between net ultrafiltration intensity and time to mortality in propensity-matched cohort. Kaplan–Meier failure plots by UF^{NET} for probability of death over 1 year from ICU admission among patients with UF^{NET} ≤ 25 ml/kg/day (n = 258) compared with propensity-matched patients with UF^{NET} > 25 ml/kg/day (n = 258). Red line, UF^{NET} ≤ 25 ml/kg/day; green line, UF^{NET} > 25 ml/kg/day. Probability of death lower among patients who received UF^{NET} > 25 ml/kg/day compared with UF^{NET} ≤ 25 ml/kg/day (log-rank p < 0.001). ICU intensive care unit

- 1 Net Ultrafiltration Rate and Mortality Among Critically III Adults with
- 2 Acute Kidney Injury Treated with Continuous Venovenous
- 3 Hemodiafiltration: A Secondary Analysis of the Randomized
- 4 Evaluation of Normal Versus Augmented Level of Renal Replacement
- 5 Therapy Trial
- 6 Raghavan Murugan, MD, MS, FRCP, FCCM^{1,2} Samantha J. Kerti, MS² Chung-Chou H.
- 7 Chang, PhD^{2,3,4} Martin Gallagher, MD, PhD⁵ Gilles Clermont, MD, MSc² Paul M.
- Palevsky, MD^{1,3,6} John A. Kellum, MD, MCCM^{1,2} Rinaldo Bellomo, MD, PhD⁷

Importance: Net ultrafiltration is frequently used for treatment of fluid overload among critically ill patients. Whether the rate of net ultrafiltration influences outcome is unclear.

Objective: To examine association between net ultrafiltration rate and survival.

Design: We performed a secondary analysis of the Randomized Evaluation of Normal vs. Augmented Level (RENAL) of Renal Replacement Therapy trial between May, 31st, 2018, and January 31, 2019. The RENAL trial was conducted between December 30, 2005, and November 28, 2008.

Setting: Thirty-five ICUs in Australia and New Zealand.

Participants: Critically ill adults with acute kidney injury and treated with continuous venovenous hemodiafiltration.

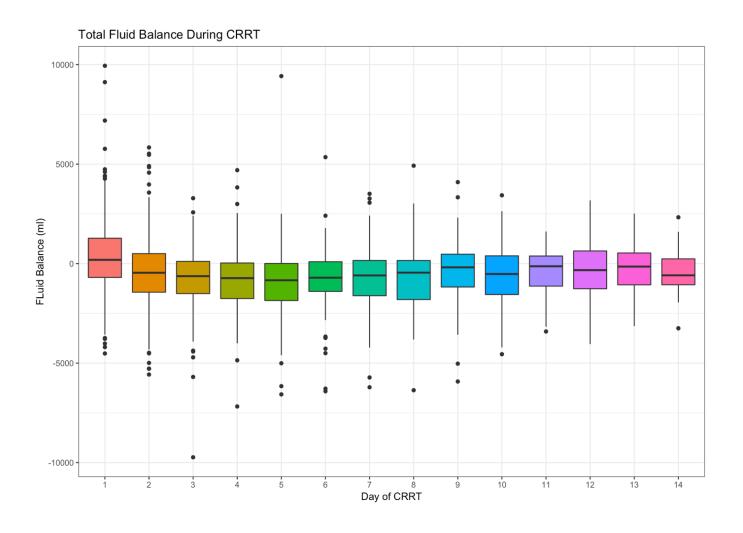
Exposure: Net ultrafiltration rate defined as the volume of fluid removed per hour adjusted for patient body weight.

Baseline Patient Characteristics by Net Ultrafiltration Rate

	No.(%)					
Characteristic	All Patients (N=1,434)	<1.01 (mL/kg/hr) (N=477)	1.01–1.75 (mL/kg/hr) (N=479)	>1.75 (mL/kg/hr) (N=478)	P value	
Age, years, median(IQR)	67.3 (56.9 - 76.3)	69.3 (61 - 77.4)	68.1 (57.2 - 76.1)	63.8 (51.4 - 74.2)	<0.001	
Age category, years						
<53.2	287 (20)	65 (13.6)	96 (20)	126 (26.4)		
53.2 to < 63.6	287 (20)	93 (19.5)	83 (17.3)	111 (23.3)		
63.6 to <71.1	286 (20)	98 (20.5)	97 (20.2)	91 (10)	< 0.001	
71.1 to <77.7	287 (20)	107 (22.4)	111 (23.2)	69 (14.4)		
≥77.7	287 (20)	114 (24)	92 (19.2)	81 (17)		
Male sex	924 (64.4)	311 (65.2)	330 (69)	283 (59.2)	0.007	
Weight, kg, median(IQR) ^a	80 (70 - 90)	81 (73 - 90)	80 (74 - 90)	75 (68 - 85)	< 0.001	
Preadmission eGFR,						
mL/min/1.73m ² , median(IQR) ^b Patients with known	53 (32.6 – 73.9)	48.1 (31 - 68.4)	51 (34 - 72.8)	59 (33.3 - 80.2)	0.009	
eGFR ^b , mL/min/1.73m ² 46 to <60	143 (30.6)	52 (29.2)	48 (32)	43 (31)		
30 to <46	156 (33.4)	64 (36)	52 (34.7)	40 (28.8)	0.63	
<30	168 (36)	62 (34.8)	50 (33.3)	56 (40.3)	0.03	
Time in ICU before	100 (30)	02 (34.0)	30 (33.3)	30 (40.3)		
randomization, hours, median(IQR)	20 (6 – 51)	13 (3 - 41)	21 (6 - 53)	26 (8 - 63)	<0.001	
Mechanical ventilation ^a	1057 (73.7)	330 (69.2)	356 (74.3)	371 (77.6)	0.01	
Sepsis ^a	709 (49.4)	221 (46.3)	235 (49.1)	253 (53)	0.12	

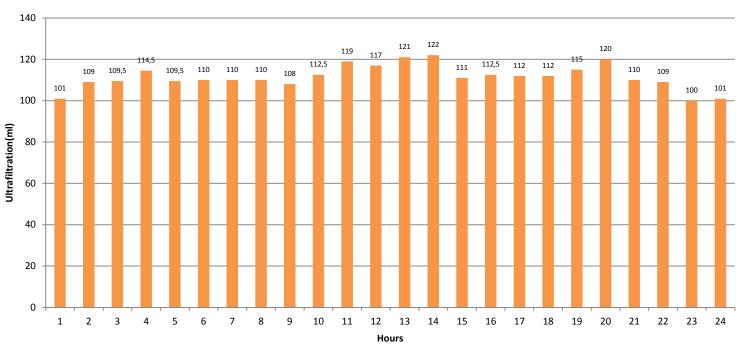
Table 2
Processes of Care During Net Ultrafiltration and Outcomes

		No	. (%)	,	
Characteristic	All Patients (N=1,434)	<1.01 (mL/kg/hr) (N=477)	1.01-1.75 (mL/kg/hr) (N=479)	>1.75 (mL/kg/hr) (N=478)	P value
Intensity of RRT		, ,	, , , , , , , , , , , , , , , , , , , ,		
High	708 (49.4)	244 (51.1)	216 (45.1)	248 (52)	0.07
Low	726 (50.6)	233 (48.8)	263 (55)	230 (48.1)	0.07
Total SOFA score, median(IQR)	8 (6 – 11)	8 (6 – 11)	8 (6 – 10)	8 (6 – 11)	0.19
Individual daily mean					
SOFA score, median(IQR)					
Cardiovascular	2.8(1.5 - 3.7)	3(1.4-4)	2.7(1.5 - 3.6)	2.7(1.3 - 3.7)	0.03
Respiratory	3(2.5 - 3.1)	3(2.1 - 3)	3(2.6 - 3.1)	3(2.6 - 3.2)	0.08
Coagulation	1.8(0.5 - 2.9)	1.7(0.4 - 3)	1.7(0.5 - 2.7)	1.8(0.7 - 2.7)	0.99
Liver	2(0.5-3)	2(0.6 - 3.1)	1.8(0.6 - 3)	1.8(0.3 - 3)	0.16
Duration of study					
treatment, days, median(IQR)	3 (2 – 7)	2 (1 – 4)	4 (2 – 8)	5 (2 – 10)	<0.001
Effluent flow rate, mL/kg/hr, median(IQR)	25 (25 – 40)	40 (25 – 40)	25 (25 – 40)	40 (25 – 40)	0.07
Daily fluid balance, mL/day, median(IQR)	-38 (-812 – 727)	641 (-91 – 1,793)	-55.5 (-678.5 – 490)	-658 (-1,445 – 55)	<0.001
Cumulative fluid balance, mL, median(IQR)	-107 (-4,061 – 3,087)	2,335 (-177 – 5,548)	-368 (-3,538 – 2,437)	-3,553.5 (-7,747 – 408)	<0.001

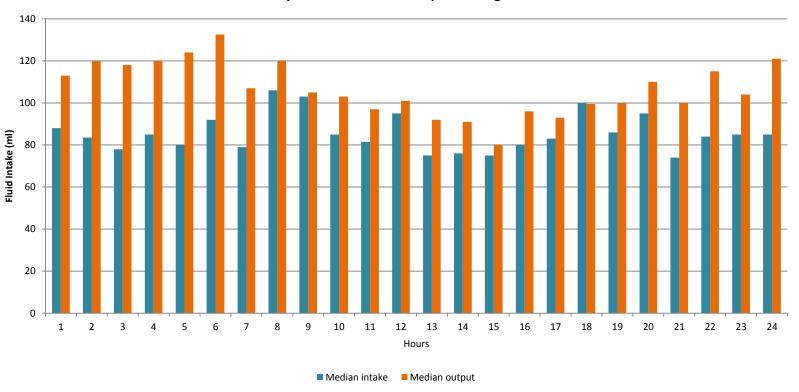

		Hazard Ratio Range (95% CI) by Time Interval ^a					
Characteristic	Model	0 – 3 days (N=1,390)	3 – 7 days (N=1,216)	7 – 13 days (N=1,085)	13 – 27 days (N=976)	27 – 90 days (N=862)	P value
>1.75 vs. <1.01	Unadjusted	0.62 (0.47–0.82)	0.86 (0.67–1.10)	1.31 (1.02–1.68)	1.46 (1.11–1.91)	1.70 (1.23–2.34)	<0.001
mL/kg/hr, (ref)	Adjusted ^b	1.13 (0.81–1.57)	1.24 (0.93–1.66)	1.51 (1.13–2.02)	1.52 (1.11–2.07)	1.66 (1.16–2.39)	0.01
>1.75 vs. 1.01 –	Unadjusted	0.97 (0.72–1.30)	1.16 (0.89–1.49)	1.49 (1.16–1.91)	1.40 (1.07–1.82)	1.66 (1.21–2.28)	0.002
1.75 mL/kg/hr, (ref)	Adjusted ^b	1.12 (0.81–1.56)	1.18 (0.89–1.57)	1.44 (1.10–1.90)	1.42 (1.07–1.89)	1.77 (1.26–2.49)	0.004
1.01 – 1.75 vs.	Unadjusted	0.64 (0.48–0.85)	0.74 (0.57–0.96)	0.84 (0.64–1.09)	1.14 (0.86–1.52)	0.97 (0.69–1.37)	0.006
<1.01 mL/kg/hr, (ref)	Adjusted ^b	1.01 (0.74–1.39)	1.09 (0.82–1.46)	1.00 (0.74–1.34)	1.15 (0.84–1.52)	0.85 (0.58–1.25)	0.59
UF ^{NET} per 0.50	Unadjusted	0.90 (0.85–0.97)	0.97 (0.92–1.03)	1.06 (1.00–1.12)	1.09 (1.03–1.16)	1.11 (1.04–1.19)	<0.001
mL/kg/hr increase	Adjusted ^b	1.03 (0.97-1.09)	1.05 (1.00-1.11)	1.08 (1.02-1.15)	1.11 (1.04–1.18)	1.13 (1.05–1.22)	0.003

^a Shown are unadjusted and adjusted hazard ratios estimated from Gray's model for association between UF^{NET} rate and mortality within each time interval. Models included five intervals and four nodes with the default timing of nodes chosen by the statistical program based on number of events within each time interval. A hazard ratio <1 suggests that UF^{NET} rate is associated with lower mortality and a hazard ratio >1 suggests UF^{NET} rate is associated with higher mortality within each time interval. P values reported are for the ranges of hazard ratios across times intervals from the model.

	No. (%)						
Characteristic	All Patients (N=1,434)	<1.01 (mL/kg/hr) (N=477)	1.01–1.75 (mL/kg/hr) (N=479)	>1.75 (mL/kg/hr) (N=478)	P Value		
Hourly UF ^{NET} volume, mL/hr, median(IQR)	104.7 (56.2 – 150.3)	31.7 (0.66 – 62.5)	106 (89.5 –131)	167.4 (141.5 – 203)	<0.001		
Cumulative UF ^{NET} volume, mL, median(IQR)	6,977 (2,370 – 16,950)	1,708 (100 – 4007)	8,535 (4,504 – 16,436)	16,560.5 (8,509 – 28,380)	<0.001		
Daily fluid balance excluding UF ^{NET} , mL/day, median(IQR) ^a	1,739.5 (971 – 2,563)	1,370 (561– 2,259)	1,683 (989 – 2,440.5)	2,058.5 (1,385 – 2,882)	<0.001		
Cumulative fluid balance excluding UF ^{NET} , mL, median(IQR) ^a	7,406 (3,079 – 15,284)	4,582 (1,276 – 8,690)	8,476 (3,590 – 15,878)	11,092 (5,127 – 22,385)	<0.001		
Duration of mechanical ventilation, days, median(IQR)	5 (2 – 10)	3 (1 - 7)	6 (2 - 12)	7 (3 - 12)	<0.001		
ICU length of stay, days, median(IQR)	7 (3 – 14)	5 (2 - 10)	8 (4 - 15)	9 (5 - 16)	<0.001		
Hospital length of stay, days, median(IQR)	8 (5 - 15)	6 (3 - 11)	9 (5 - 16)	10 (6 - 16)	<0.001		
No. of days of RRT, days, median(IQR) RRT dependence among	5 (3 – 11)	3 (2 – 6)	6 (3 – 11)	7 (4 – 17)	<0.001		
survivors By day 28 By day 90	120 (13.4) 44 (5.5)	19 (6.5) 10 (3.8)	37 (11.6) 17 (5.8)	64 (22) 17 (6.9)	<0.001 0.28		



Cohort of 370 patients from Austin Hospital ICU



Hourly Net Ultrafiltration

Hourly Fluid Intake and Output During CRRT

Fluid composition

- Bicarbonate-buffered fluid is the standard composition
- However, citrate CRRT is becoming dominant and commercial products use a combination of citrate and bicarbonate
- If citrate is used appropriate adjustments need t be made to ensure a near physiologic buffer concentration (25-35 mEq/L)

The data are clear!

A Randomized Controlled Trial of Regional Citrate Versus Regional Heparin Anticoagulation for Continuous Renal Replacement Therapy in Critically III Adults

David J. Gattas, MD, MMed (ClinEpi), FCICM, FRACP^{1,2}; Dorrilyn Rajbhandari, RN Post Grad Dip (Clinical Nursing)^{1,2}; Celia Bradford, MD, FCICM³; Heidi Buhr, RN, MClinTPrac¹; Serigne Lo, PhD, AStat²; Rinaldo Bellomo, MBBS, MD (Hons), FRACP, FCICM, PG Dip Echo^{4,5}

Design: Multicenter, parallel group randomized controlled trial.

Setting: Seven ICUs in Australia and New Zealand.

Patients: Critically ill adults requiring continuous renal replacement therapy.

Interventions: Patients were randomized to receive one of two methods of regional circuit anticoagulation: citrate and calcium or heparin and protamine.

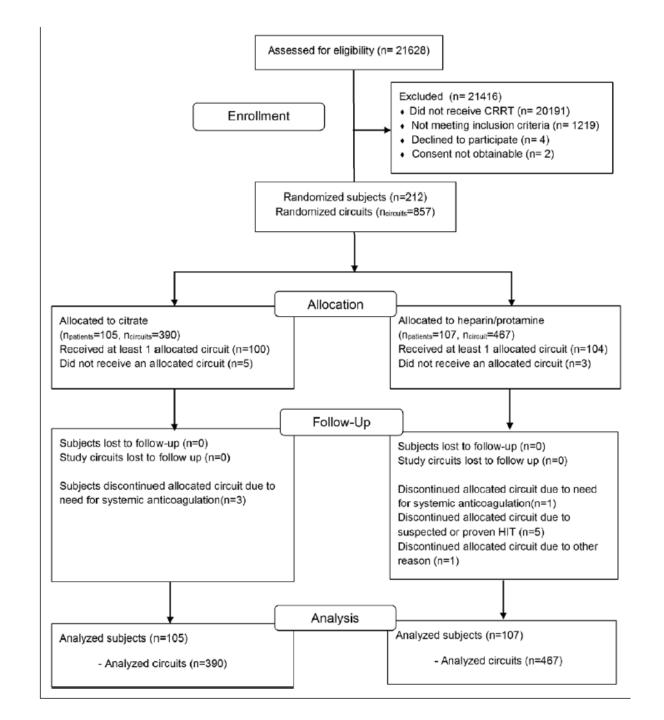


TABLE 1. Baseline Demographic and Clinical Characteristics of the Intervention and Control Groups

Variable	Citrate (<i>n</i> = 105)	Heparin (<i>n</i> = 107)
Age, yr	66.4 (14.3)	66.8 (14.9)
Male gender, n/total (%)	74/105 (71)	72/107 (67)
Weight		
Measured (vs estimated), n/total (%)	46/105 (44)	50/107 (47)
Weight (kg)	85.0 (20.6)	84.3 (22.9)
Source of admission to ICU, n/total (%)		
Emergency department	24/105 (22.9)	38/107 (35.5)
Hospital ward	27/105 (25.7)	19/107 (17.8)
Operating theatre, elective	31/105 (29.5)	33/107 (30.8)
Operating theatre, emergency	4/105 (3.8)	3/107 (2.8)
Transfer from another hospital	4/105 (3.8)	6/107 (5.6)
Transfer from other ICU	9/105 (8.6)	6/107 (5.6)
Not available	6/105 (5.7)	2/107 (1.9)
Time from ICU admission to randomization (hr)		
Median (interquartile range)	25.1 (44.5)	21.5 (44.0)
APACHE III diagnostic group, n/total (%)		
Coronary artery bypass grafts	14/105 (13.3)	13/107 (12.1)
Renal disorders	10/105 (9.5)	7/107 (6.5)
Sepsis with shock, nonurinary	8/105 (7.6)	7/107 (6.5)
Other respiratory diseases	6/105 (5.7)	7/107 (6.5)
Valvular heart surgery	5/105 (4.8)	6/107 (5.6)
Other	62/105 (59.0)	67/107 (62.6)
APACHE II score, mean (sp)	25.6 (7.6)	25.0 (6.9)

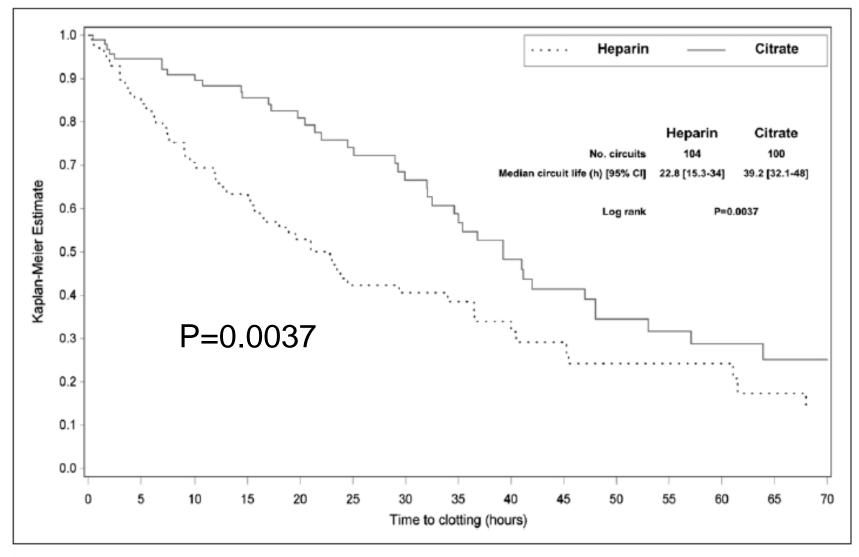


Figure 2. Kaplan-Meier estimate of the probability of continuous renal replacement therapy circuit survival for the first circuit.

For all circuits: HR for clotting 2.03 using frailty model

Conclusions

- Avoidance of fluid overload is important during RRT
- Higher net UF aimed at achieving near dry weight after the initial resuscitation phase is desirable
- Very high net UF rates may be a marker of illness severity and may be undesirable as well
- Much more work is needed in the field of volume control during RRT in ICU
- Fluid composition is moving toward citrate. If citrate CRRT is not applied bicarbonate is the standard

