
Scenario 3: Dialisi pediatrica e dell'adulto e connessione all'apparecchio ECMO

Videoconferenza LIVE per

INFERMIERI NEFROLOGI INTENSIVISTI ... e tutti i Medici in Formazione Specialistica! XI E d i z i o n e

Zaccaria Ricci Dipartimento Medico Chirurgico di Cardiologia Pediatrica

Comune di Roma

CASO CLINICO

- Paziente di 6 mesi, 5 kg (ex-prematuro 25 settimane, 550 g alla nascita)
- Disfunzione ventricolare destra severa e segni ecografici di pressione polmonare elevata (possibilmente sistemica)
- In terapia cronica con diuretico e vasodilatoatore polmonare e antiaggregante
- RICOVERO PER BRONCHIOLITE e quadro febbrile (39 C°)

CASO CLINICO

- Creatinina basale 0.8 m/dl, PCR 25 mg/dL
- Necessità di intubazione e ventilazione
- Riempimento fluidico per ipotensione con sovraccarico (F.O.) del 8%
- Antibiotico-terapia empirica con vancomicina e pip/tazo
- Richiesto cateterismo per valutazione ipertensione polmonare e/o angio TC
- Diuresi < 1 ml/kg/h

EPIDEMIOLOGIA DELLA PCRRT

AWARE: 1.5% of admitted patients (no neonates, no cardiac surgery)

AWAKEN: 1% of admitted neonates (no cardiac surgery)

PICANet: 2.9% of admitted patients (from 0 to 8.6%)

DMCCP: 2% (1.3-2.5%, including ECMO patients)

Non-Infant Specific 3rd/4th generation CRRT

Infant-Specific/Adapted Devices

Cardio Renal Pediatric Dialysis Emergency Machine (CARPEDIEM)

Newcastle Infant Dialysis and Ultrafiltration System (NIDUS)

CARPEDIEM: CArdio Renal PEDIatric Emergency Machine

Pediatric patients in the range of 2-10 kgs (approximate BSA of 0.15–0.5 m²)

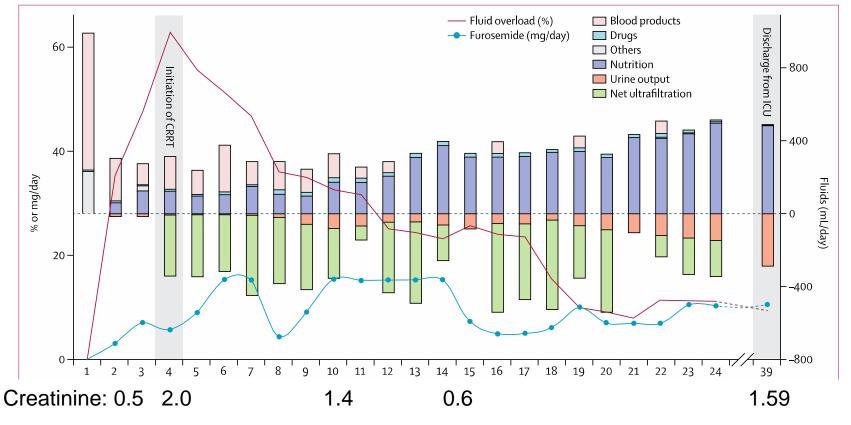
DESIGNED BY THE INTERNATIONAL RENAL RESEARCH INSTITUTE (2011)

EVOLUZIONE DEL PROGETTO

Foreword by

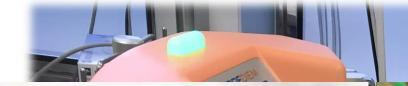
The story of a baby, a physician and a machine

Claudio Ronco



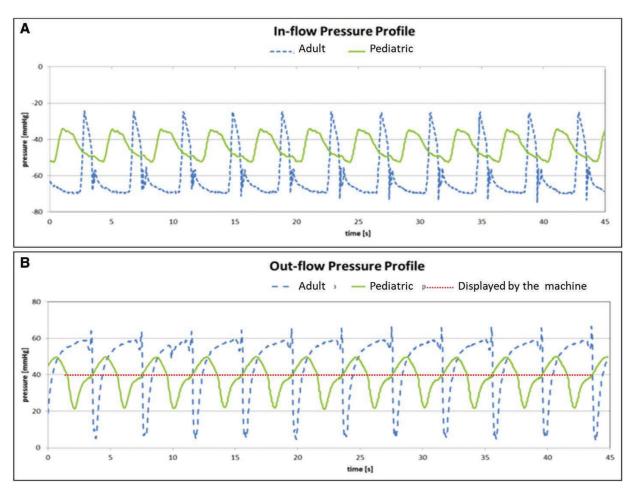
2011: PRODUZIONE DEL PRIMO PROTOTIPO **2014: PRIMO TRATTAMENTO** 2014-2019: PUBBLICAZIONE DI 13 lavori e successivo sviluppo 2015: Pubblicazione del libro **2020:** APPROVAZIONE FDA

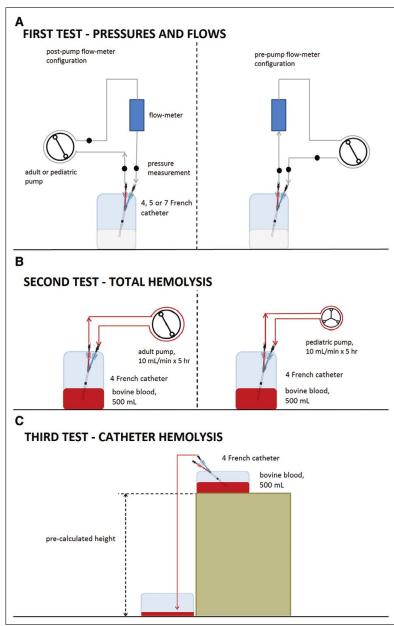
Continuous renal replacement therapy in neonates and small \rightarrow infants: development and first-in-human use of a miniaturised machine (CARPEDIEM)

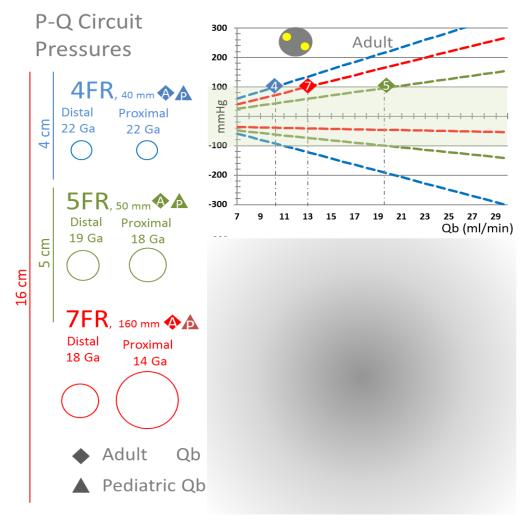

Claudio Ronco, Francesco Garzotto, Alessandra Brendolan, Monica Zanella, Massimo Bellettato, Stefania Vedovato, Fabio Chiarenza, Zaccaria Ricci, Stuart L Goldstein

Lancet, May 2014

CARPEDIEM




belice


Choice of Catheter Size for Infants in Continuous Renal Replacement Therapy: Bigger Is Not Always Better PCCM 2019

Francesco Garzotto, MSc^{1–3}; Marta Zaccaria, MSc⁴; Enrico Vidal, MD, PhD⁵; Zaccaria Ricci, MD⁶; Anna Lorenzin, MSc⁴; Mauro Neri, MSc⁴; Luisa Murer, MD⁵; Federico Nalesso, MD, PhD^{3,4}; Alfredo Ruggeri, MSc⁷; Claudio Ronco, MD^{3,4}

Adult VS Miniaturized Pump

The 3 roller miniaturized pump significantly optimized flows of 5 Fr bilumen catheters within the safety area (green)

Garzotto F et al, PCCM 2019

INFANT CRRT CIRCUITS: PRISMAFLEX[®] vs CARPEDIEM[®]

	Priming volume	Qb ml/min	Max net UF	Rep rate range (ml/h)	UF rate super vision	weight super vision	AVAILABLE MODALITY	Fluid gravimetric control
Prismaflex [®] HF20 (0,20 m ²)	59 ml	10- 100	none	0-500	TMP alarm	≤ 7 g	CVVH (pre+post), CVVHD, CVVHDF	± 20 g immediate Or ± 60 ml/last 3 hrs
Carpediem [®] 025 (0,25 m ²)	41 ml	2-50	1000 ml/24 h	0-600	20% of Qb	1 g	CVVH (pre OR post), CVVHD	Steps from 4 to max 30 g
Carpediem [®] 015 (0,147 m ²)	33 ml	2-20	1000 ml/24 h	0-240	20% of Qb	1 g	CVVH (pre OR post), CVVHD	Steps from 4 to max 30 g
Carpediem [®] 0075 (0,075 m ²)	27 ml	2-15	1000 ml/24 h	0-150	20% of Qb	1 g	CVVH (pre OR post), CVVHD	Steps from 4 to max 30 g

STRICT EFFLUENT LIMITATION TO 20% BLOOD FLOW RATE!!!!!

CVVHD treatment with CARPEDIEM: small solute clearance at different blood and dialysate flows with three different surface area filter configurations

PED NEPH 2016

Anna Lorenzin¹ & Francesco Garzotto¹ & Alberta Alghisi² & Mauro Neri¹ & Dario Galeano¹ & Stefania Aresu³ & Antonello Pani³ & Enrico Vidal⁴ & Zaccaroa Ricci⁵ & Luisa Murer⁴ & Stuart L. Goldstein⁶ & Claudio Ronco^{1,2,3,4,5,7}

K= 5 ml/min in a 3 kg pt=

100 ml/kg/h (considering a 100% saturation of the dialysate....)

TPE in pediatric CHD pts?

- 1.Hyperbilirubinemia in pts already undergoing CRRT (liver failure, neonatal jaundice, associated liver disease)
- 2.Sepsis with thrombocytopenia (in anuric patients)
- 3.Immuno-mediated HTx rejection

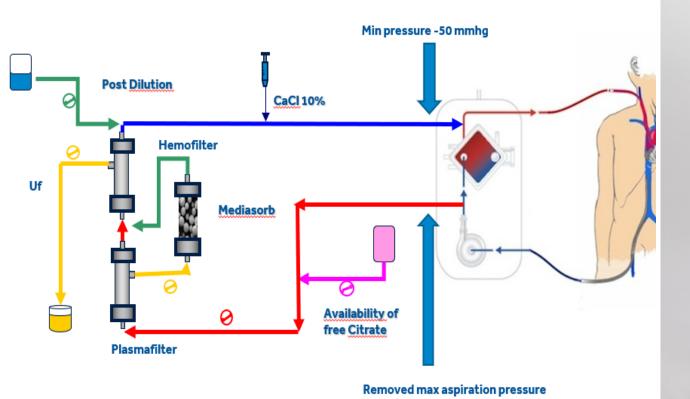
Therapeutic Plasma Exchange in Neonates and Infants: Successful Use of a Miniaturized Machine BPU 2017

Enrico Vidal^a Francesco Garzotto^{b, d} Mattia Parolin^a Chiara Manenti^{d, e}

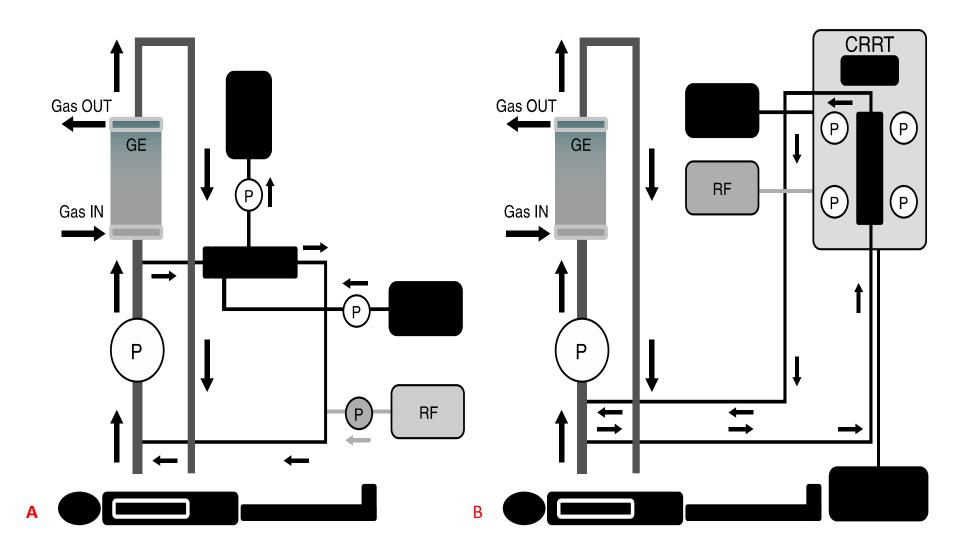
Anna Zanin^c Massimo Bellettato^c Giuseppe Remuzzi^f Stuart L. Goldstein^g

Luisa Murer^a Claudio Ronco^{b, d}

Table 1. Patients' characteristics and therapeutic plasma exchange parameters

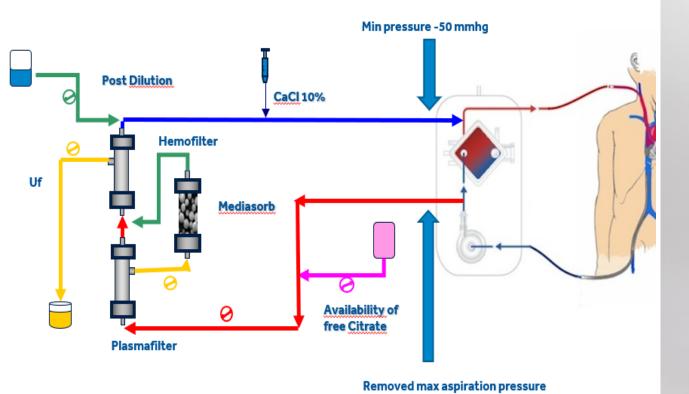

	Case 1	Case 2
Age (days of life), years	10	45
Body weight at birth, g	3,165	2,765
Body weight at TPE start, g	3,960	3,490
Indication	Severe hyperbilirubinemia	Atypical hemolytic-uremic syndrome
Central venous catheter		
Ste	4 Ch	5 Ch
Sze	Right femoral vein	Right jugular vein
Lenght	5 cm	5 cm
TPE parameters		
Replacement fluid	Fresh frozen plasma	Fresh frozen plasma
Replacement volume, mL	270	200
Plasmafilter (surface area)	Plasmart 05 (0.05 m ²)	Plasmart 05 (0.05 m ²)
Qb, mL/min	12	10
Exchangerate – Q _P , mL/min	1.2	1
In-flow pressure – P _{IN} , mm Hg	–115 to –80	-100 to -80
Out-flow pressure – P _{OUT} , mm Hg	105 to 125	55 to 75
Drop pressure, mm Hg	10 to 15	20 to 35
Alarms	None	None
Priminglines		
Volume, mL	34	50
Solution	Normal saline	4%albumin
Anticoagulation		
Heparin bolus, U/kg	0	20
Heparin infusion, U/kg/h	7	15
Number of TPE sessions performed	4	5
Technical and/or clinical complications	None	None
Outcome	Normal psychomotor development chronic renal failure	Normal renal function

CASO CLINICO


- Desaturazione severa (<85%) con peggioramento della disfunzione ventricolare destra e bassa gittata refrattaria a terapia vasoattiva
- ECMO V-A
- •Necessità di proseguire la CRRT

\Box Connessione ECMO

Tuttl i TRATTAMENTI disponibili sono applicabili in modalità ECMO



bolice AMPLYA

\Box Connessione ECMO

Tutti i TRATTAMENTI disponibili sono applicabili in modalità ECMO

bolice AMPLYA

Continuous Renal Replacement Therapy in Venovenous Extracorporeal Membrane Oxygenation: A Retrospective Study ASAIO 2019 on Regional Citrate Anticoagulation

Marco Giani,* Vittorio Scaravilli,† Flavia Stefanini,‡ Gabriele Valsecchi,‡ Roberto Rona,* Giacomo Grasselli,†§ Giacomo Bellani,*‡ Antonio M. Pesenti,†§ and Giuseppe Foti*‡

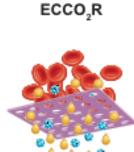
CRRT machine

Table 2. Reason for circuit substitution and circuits lifespanin RCA + UFH and UFH group

	RCA + UFH group	UFH group	p
No. of CRRT circuits CRRT circuit change	97	53	<0.001
Clotting	11 (11%)	20 (38%)	
Elective replacement	53 (55%)	12 (23%)	
Others	30 (31%)	19 (36%)	
Unknown	3 (3%)	2(4%)	
CRRT circuit duration, hours	56 [40–72]	50 [31–77]	.67
CRRT circuits used for more than 72 h	19 (19%)	14 (26%)	.32
Reinfusion			Drainage

-Clotting: increase of pressure across the filter (*e.g.* pressure drop > 150 mmHg) or presence of visible clots that required circuit replacement to continue CRRT treatment -Unscheduled change: before 72 hours uninterrupted CRRT

- 48 patients CRRT during vv-ECMO in the study period.
- CRRT circuit clotting was 11% in the 22 RCA + UFH group vs. 38% in the 15 UFH group (p < 0.001). -11 received both and were exclud-
- No complication with citrate anticoagulation



Risk of

Risk of

Oxygenator clotting

- Oxygenator clotting
 - Pulmonary embolism during VV-ECMO
 - Arterial embolism during VA-ECMO —

Plasmapheresis

 Loss of micronutrients / antibiotics / catecholamines
Volume expansion with necessity of UFR adjustment

Pulmonary embolism during AV-ECCO, R

 Increased coagulability with use of FFP
Allergic reaction to substitute solution

RRT clinical alterations

- Loss of micronutrients / antibiotics / catecholamines
- Hypophosphataemia
- Risk of hemolysis, thrombosis and DIC when connected to ECOS circuits
- Risk of Na overload, hypocalcaemia, metabolic alcalosis/acidosis during RCA

RRT technical issues

- Flow turbulence
- Circuit pressures alteration

RRT

• Malfunction of the system

ARTIFICIAL-ARTIFICIAL ORGAN INTERACTION

Courtesy of dr Faeq Husain-Syed

CONCLUSIONE

- Problema cardio-polmonare in paziente pediatrico
- Sindrome cardio-renale di tipo 1 e 2
- Necessità di MULTI-ORGAN SUPPORT
- Evoluzione delle moderne piattaforme al fine di adattarsi alle esigenze di differenti pazienti nelle diverse fasi cliniche di malattia
- NECESSITA' DI GESTIRE CRRT pediatrica con apparecchi dedicati e non adattati