Principali problemi tecnici e clinici

CRRT Questione di EQUIPE!

Videoconferenza LIVE per

INFERMIERI NEFROLOGI INTENSIVISTI ... e tutti i Medici in Formazione Specialistica! XI E d i z i o n e

Zaccaria Ricci

Dipartimento Medico Chirurgico di Cardiologia Pediatrica

15-16 giugno 2020

The NEW ENGLAND JOURNAL of MEDICINE

Intensity of Renal Support in Critically Ill Patients with Acute Kidney Injury

The VA/NIH Acute Renal Failure Trial Network*

Table 4. Summary of Complications Associated with Study Therapy.*

Event	Intensive Strategy (N = 563)	Less-Intensive Strategy (N=561)	gy P Value	
	no. of po	atients <mark>(</mark> %)		
Any serious adverse event†	287 (51.0)	280 (49.9)	0.72	
Not related to study therapy	207 (72.1)	202 (72.1)		
Possibly or probably related to study therapy	48 (16.7)	51 (18.2)		
Definitely related to study therapy	32 (11.1)	27 (9.6)		
Nonfatal only‡	137 (47.7)	128 (45.7)		
Catheter-related complications				
Insertion-related complications	28 (5.0)	31 (5.5)	0.68	
Late catheter-related complications	48 (8.5)	38 (6.8)	0.27	
Hypotension				
Requiring vasopressor support	81 (14.4)	56 (10.0)	0.02	
Requiring discontinuation of treatment	55 (9.8)	49 (8.7)	0.55	
Requiring other intervention	212 (37.7)	168 (29.9)	0.006	
Other treatment-related complications				
Any nonhypotensive complication	216 (38.4)	194 (34.6)	0.19	
Electrolyte disturbance	144 (25.6)	116 (20.7)	0.05	
Hypokalemia	42 (7.5)	25 (4.5)	0.03	
Hypophosphatemia	99 (17.6)	61 (10.9)	0.001	
Other	99 (17.6)	85 (15.2)	0.27	

COMPLICANZE DURANTE CRRT

CLINICHE

• Ipotensione

- Coagulazione
- Anemia
- Ipotermia
- Diselettrolitemie
- Perdita di soluti
- Complicazioni correlate all'accesso vascolare

<u>TECNICHE</u>

- Errori nella somm.ne della terapia
- Errori di bilancio
- Interfaccia macchinaoperatore
- Altre complicanze "elettroniche"

Original Paper

Blood Purification

Blood Purif 2015;39:333–339 DOI: 10.1159/000380903 Received: August 14, 2014 Accepted after revision: February 12, 2015 Published online: May 22, 2015

Incidence of Adverse Events during Continuous Renal Replacement Therapy

Abbasali Akhoundi^a Balwinder Sngh^b Myriam Vela^a Sanjay Chaudhary^b Myles Monaghan^a Gregory A. Wilson^c John J. Dillon^a Rodrigo Cartin-Ceba^b John C. Lieske^a Ognjen Gajic^b Kianoush Kashani^{a, b}

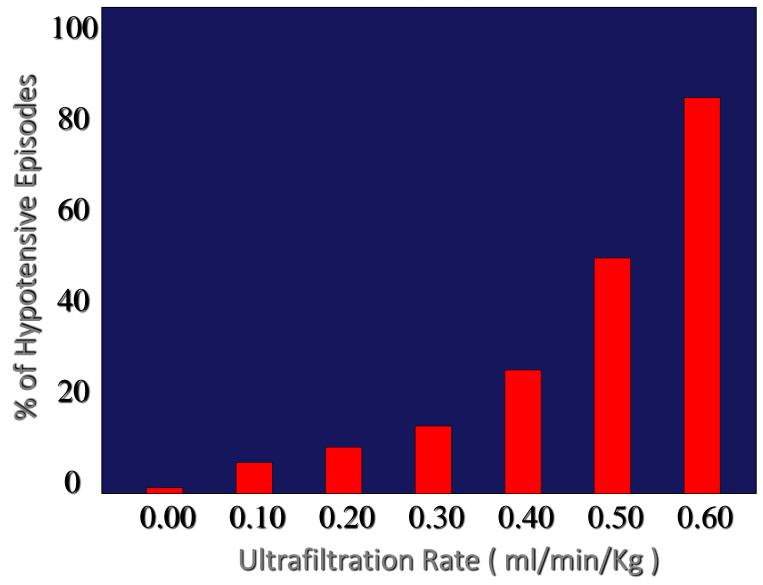
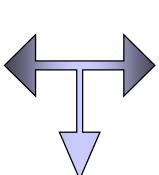

^aDivision of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minn., ^bDivision of Pulmonary and Citical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minn., ^cDepartment of Anesthesiology, Mayo Clinic, Rochester, Minn., USA

Table 2. Adverse events

Catheter-related complication, n (%) Bleeding Arterial puncture Hematoma Other Line-related infection *	225 (38) 134 (23) 6 (1) 17 (2.85) 71 (11.93) 30 (5)
SAEs, n (%)	573 (97)
First-hour hypotension	258 (43)
Significant hypothermia (<35°C)	259 (44)
New onset anemia-Hgb <10 g/dL	179 (31)
New onset thrombocytopenia (<50% baseline)	
with baseline platelet >150,000	73 (13)
New onset thrombocytopenia (<50% baseline)	
with baseline platelet <150,000	143 (26)
Arrhythmia, n (%)	484 (81)
Sinustachycardia	306 (51)
Atrial fibrillation	64 (11)
Atrial flutter	6 (1)
Ventricular tachycardia	14 (2)́
Sinusbradycardia	43 (7)
Ventricular fibrillation	19 (3)
Asystole	20 (3)
Others	12 (2)
CPR	28 (5)
-	== (=)

FREQUENZA DI IPOTENSIONE IN HD


Ronco et Al, Int J. Artif Organs, 3, 169-174, 1988

Pz di 70 Kg con AKI: sessione dialitica di 24 ore

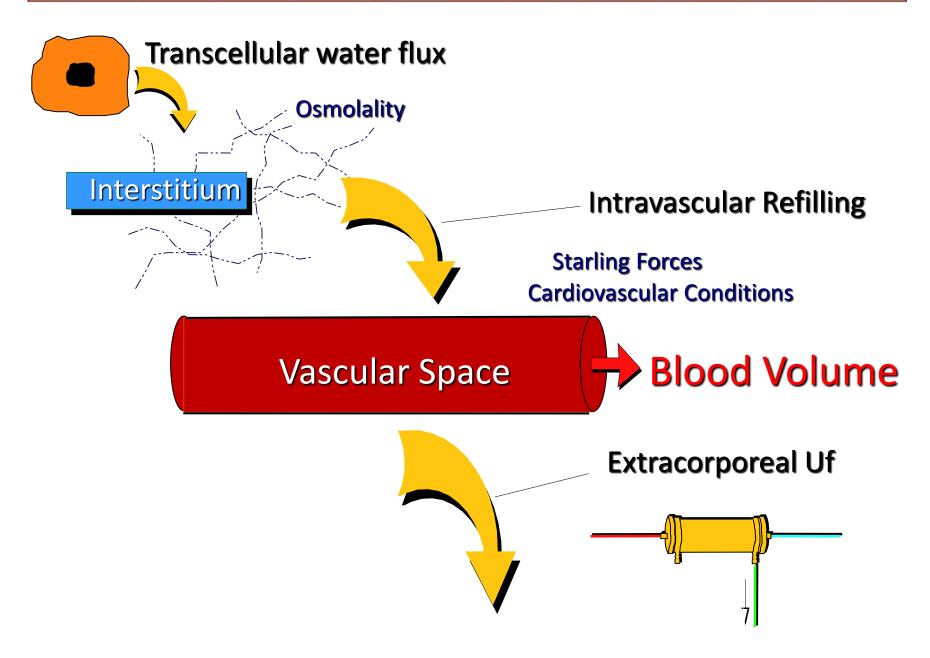
24 hour input

Blood - plasma infusions Drugs and Medications Parenteral Nutrition Volume administration

24 hour output

Urine output (=0) Intestinal fluid losses Insensible losses Other fluid losses

Ultrafiltration required = 4000 ml

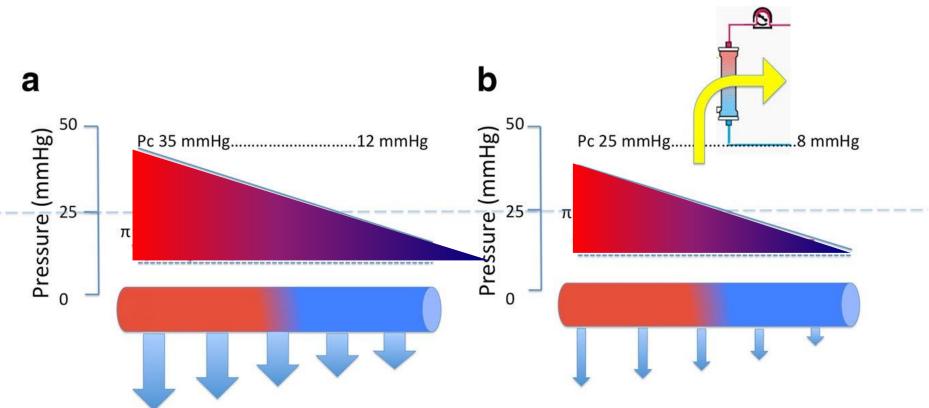

Short Daily HD 3 hours

23 ml/min 0.4 ml/min/Kg Ext.Daily HD 8 hours

8.3 ml/min 0.1 ml/min/Kg CVVH 24 hours

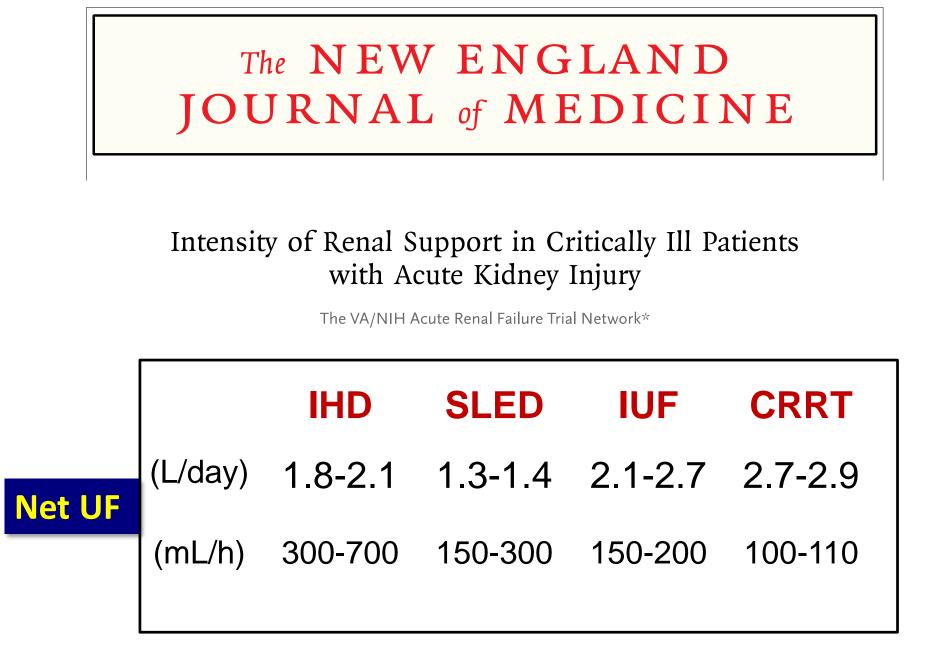
2.5 ml/min 0.03 ml/min/Kg

BLOOD VOLUME = Ultrafiltration – Refilling


LETTER

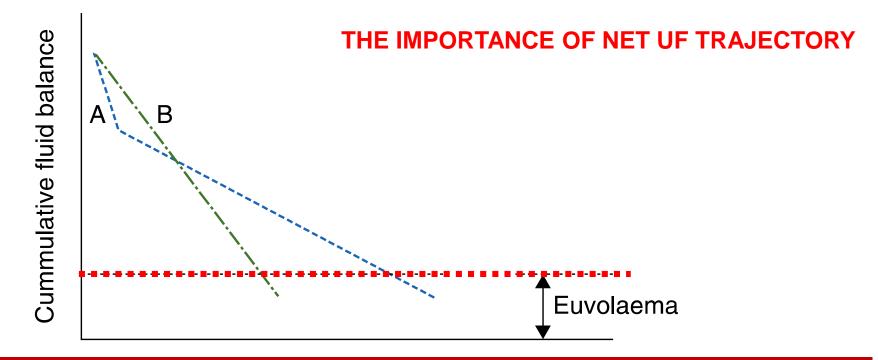
Open Acces

Cross


Cardiac output and CVP monitoring... to guide fluid removal

Matthieu Legrand $^{1,2,3^{\ast}},$ Sabri Soussi 1 and François Depret 1,2

LA RIDUZIONE DELLA PRESSIONE ATRIALE DESTRA A PARITA' DI FLUSSO (PORTATA CARDIACA=RITORNO VENOSO) E' LA DIMOSTRAZIONE CHE IL PROCESSO DI ULTRAFILTRAZIONE E' EFFICACE



VA/NIH Acute Renal Failure Trial Network, NEJM 2008

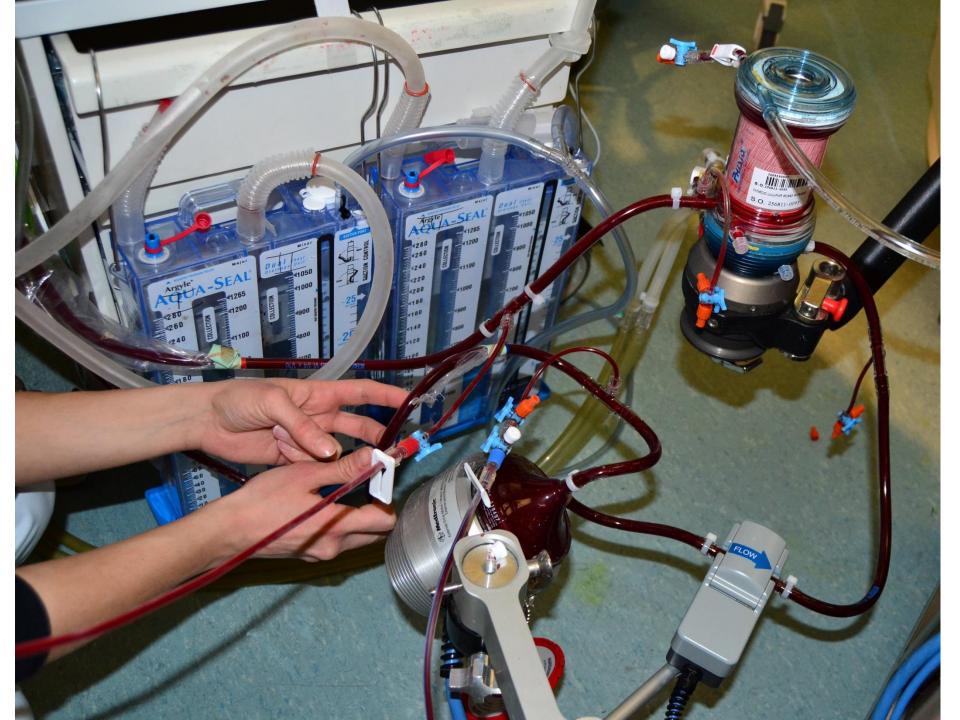
Indications and management of mechanical fluid removal in critical illness

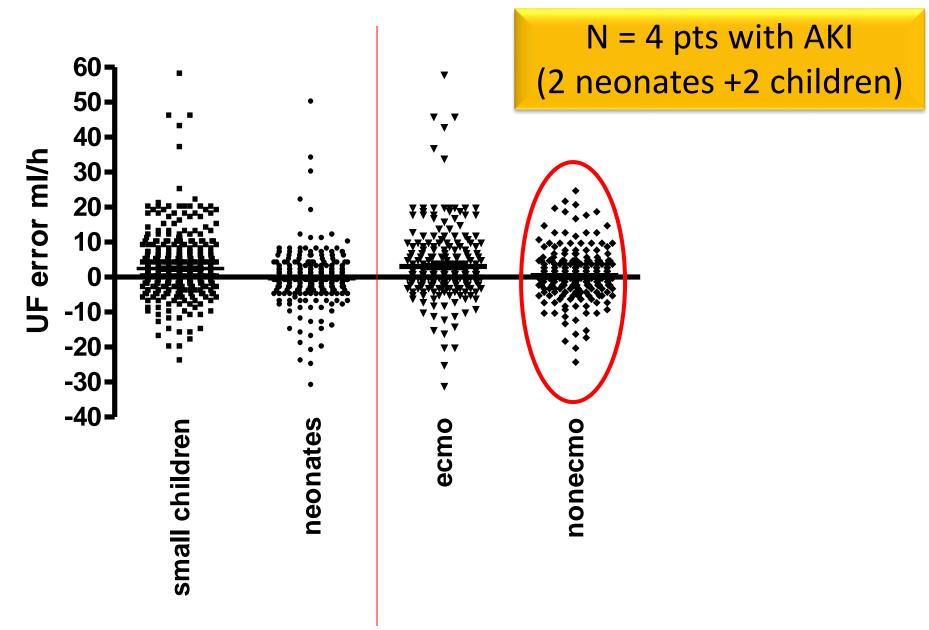
M. H. Rosner^{1†}, M. Ostermann^{2†*}, R. Murugan³, J. R. Prowle⁴, C. Ronco⁵, J. A. Kellum³, M. G. Mythen⁶ and A. D. Shaw⁷ for the ADQI XII Investigators Group BJA 2014

Rapid early fluid removal may be indicated in cardio-renal syndrome (A) (i.e. pulmonary oedema). Patients with single organ renal failure (B) may tolerate more rapid fluid removal than those with AKI complicating hemadynamic instability (C) or septic shock (D).

CAUSE DI SBILANCIO FLUIDICO DURANTE CRRT

Insufficient fluid removal <u>Positive</u> Fluid Gain

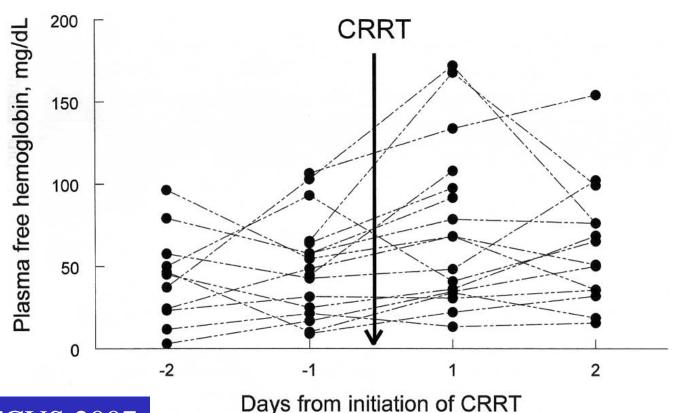

Fluid Imbalance


Absolute volume (Total Uf)

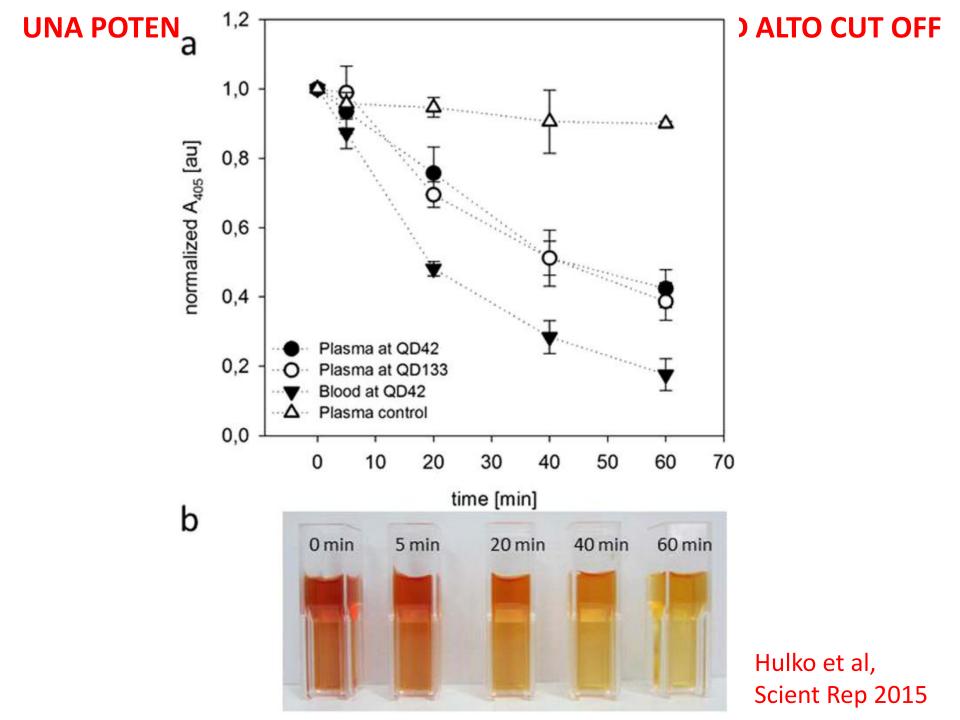
<u>Negative</u> Relative Volume (Uf rate)

TECH ERROR (THRESHOLD)

1 neonate and 1 child required pCRRT+ECMO 1 neonate a 1 child required pCRRT alone


ANEMIA

- Fiber clotting results in blood loss
- Blood loss from vascular access (example: arterial catheter in CAVH/ CAVH/ CAVHD)
- Mechanical hemolysis from shear stress/roller pumps on RBC in extracorporeal circuit


IN CHILDREN, DEDICATED CIRCUITS WITH LOW PRIMING VOLUMES ARE MANDATORY

ANEMIA

• No study currently evaluated the incidence of hemolysis during CRRT and its clinical impact

Betrus, ATCVS 2007

CASE REPORT

BMC Nephrology

Open Access

High cut-off membrane for in-vivo dialysis of free plasma hemoglobin in a patient with massive hemolysis

David Cucchiari^{1*}, Enric Reverter², Miquel Blasco¹, Alicia Molina-Andujar¹, Adriá Carpio², Miquel Sanz², Angels Escorsell², Javier Fernández² and Esteban Poch¹

Table 1 Treatment data and CPH concentrations 30', 24 h and48 h after CRRT start

	30 min	24 h	48 h
C _{In} (g/L)	4,24	4,33	3,72
C _{Out} (g/L)	4,23	4,19	3,66
C _D (g/L)	0,37	0,1	0,07
Sieving Coefficient	0,087	0,023	0,018
Clearance (ml/min)	2,87	0,76	0,62
Q _b (ml/min)	250	250	250
Q _d (ml/min)	33	33	33
Q _e (ml/Kg/h)	28,2	29	29
UF (ml/h)	0	50	50

 C_{ln} CPH concentration at the arterial side, C_{Out} CPH concentration at the venous side, C_D CPH concentration at dialysate side, Q_b blood flow, Q_d dialysate flow, Q_e effluent flow, UF UltraFiltration rate

✓ HCO cut-off: 60 kD
✓ Hb tetramer 62 kD
✓ Hb dimer 30 kD
(present with CPH <[1] g/L)

IPOTERMIA

- Extracorporeal radiant heat exchange
- Administration of large volumes of unwarmed substitution fluid may result in cooling of patient → hypothermia
- Heat loss of 750 kcal / day, thereby increasing the patient's daily energy requirements and need for a warming blanket

ALTERAZIONI ELETTROLITICHE

- Hypophosphatemia (especially with high dose therapies
 - May be associated with prolonged weaning (??Weakening of respiratory muscles)
- Hypokalemia
- Hypocalcemia (when using regional citrate anticoagulation)
- Hypercalcemia (with prolonged use of 3.5 Ca solutions)
- Hyperglycemia with use of PD solutions
- Human error (using the wrong solution)

Original Paper

Blood Purif 2015;39:333-339 DOI: 10.1159/000380903

Blood Purification

Received: August 14, 2014 Accepted after revision: February 12, 2015 Published online: May 22, 2015

Incidence of Adverse Events during Continuous Renal Replacement Therapy

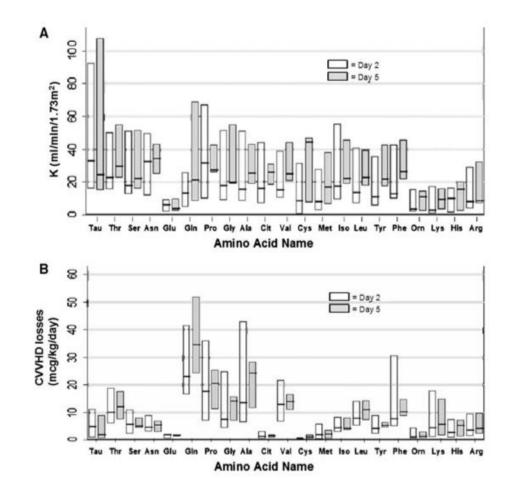
Abbasali Akhoundi^a Balwinder Singh^b Myriam Vela^a Sanjay Chaudhary^b Myles Monaghan^a Gregory A. Wilson^c John J. Dillon^a Rodrigo Cartin-Ceba^b John C. Lieske^a Ognjen Gajic^b Kianoush Kashanj^{a, b}

*Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minn., *Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minn., *Department of Anesthesiology, Mayo Clinic, Rochester, Minn., USA

Table 3. Electrolyte abnormalities

1

-				
	Baseline median (IQR)	Incidence, n (%)	Values median (IQR)	Clinically significant ^a , n (%)
Sodium, mmol/l	139 (134–143)			
Hyponatremia		148 (25)	137 (135–139)	4 (0.6)
Hypernatremia		170 (29)	144 (142–146)	20 (3)
Potassium, mmol/l	4.5 (3.9–5.1)			
Hypokalemia		269 (45)	3.6 (3.4–3.9)	25 (4)
Hyperkalemia		155 (26)	4.7 (4.4–5.2)	44 (7)
Total calcium, mg/dl	8.7 (7.9–9.4)			
Hypocalcemia		114 (19)	9.35 (8.6–10.3)	11 (3)
Hypercalcemia		207 (35)	10.7 (9.6–11.7)	48 (8)
Ionized calcium, mg/dl	4.53 (4.13–4.85)			
Hypocalcemia		547 (92)	4.05 (3.69-4.37)	131 (22)
Hypercalcemia		369 (62)	5.89 (5.41–6.33)	136 (23)
Phosphorus, mg/dl	5.4 (4.1–6.8)			
🔬 Hypophosphatemia		346 (58)	2.3 (1.9–2.9)	201 (34)
Hyperphosphatemia		395 (66)	5.2 (4.3–6.6)	263 (44)
Magnesium, mg/dl	2.2 (1.9–2.5)			
Hypomagnesaemia		190 (32)	1.8 (1.7–1.9)	1 (0.1)
Hypermagnesemia		231 (39)	2.4 (2.2–2.6)	2 (0.3)

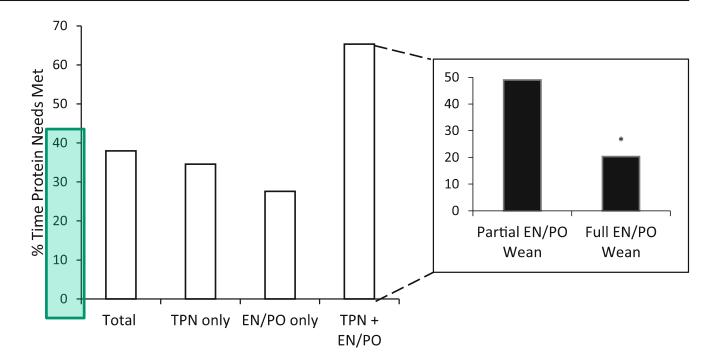

PERDITA DI AMINOACIDI

- Dialysate/ ultrafiltrate protein losses as high as 1.3 g/L with CRRT outputs of up to 50 L/day = protein losses up to 65 g/day
- Mean dialysate/ultrafiltrate protein concentration = 4 mg/dL (Biuret method)
- Protein losses were higher during convection based CVVH than CVVHDF
- Amount of protein loss also dependent on serum protein concentration
- Not yet well-studied with high volume CRRT (HVHF, PHVHF)

PERDITA DI AMINOACIDI

In standard clinical practice, CRRT overdose is a potential detrimental side effect of pediatric CRRT

Amino acid clearances ranged from 2.8 to 51.1 ml/min per 1.73 m2. CVVHD losses corresponded to 20% of intake.


BRIEF REPORT

Feeding modality is a barrier to adequate protein provision in children receiving continuous renal replacement therapy (CRRT)

Molly Wong Vega¹ & Marisa Juarez Calderon¹ & Naile Tufan Pekkucuksen¹ & Poyyapakkam Srivaths¹ & Ayse Akcan Arikan^{1,2}

Pediatr Nephrol

Fig. 1 Percentage of time meeting protein goals during CRRT by feeding modality. Initial data reported as total, further reported by only PN, only EN, or combination of PN and EN. Combination PN and EN group then divided by those whom were partially weaned from PN and maintained on combination versus those whom were fully weaned from PN to receive only EN. EN enteral nutrition, TPN total parenteral nutrition, PO by mouth. *p < 0.01

Farmaci: proprietà che determinano l'entità della rimozione con le terapie sostitutive

- Legame proteico
- Volume di distribuzione (Vd)
- Peso molecolare (PM)
- Idrosolubilità e carica elettrica
- Volume e conformazione della molecola

Proprietà dei farmaci: volume di distribuzione (Vd)

- I farmaci ad alto legame tissutale sono caratterizzati da un Vd elevato (amfotericina B: 4 L/Kg)
- Per i farmaci con Vd elevato (>2 L/Kg) la quantità relativa di farmaco presente nel plasma è modesta rispetto agli altri compartimenti:

Vd ≤ 1 L/Kg → Cl_{EXTRACORPOREA} significativa
 Vd > 2 L/Kg → Cl_{EXTRACORPOREA} irrilevante

Proprietà dei farmaci: Peso Molecolare (PM)

La maggior parte dei farmaci di comune impiego nel paziente critico hanno un PM ≤ 500 Da

Vancomicina: PM = 1448 Da

Le membrane di impiego comune in CRRT, sono caratterizzate da elevata porosità e permeabilità idraulica e non costituiscono una barriera al trasporto convettivo/diffusivo della frazione libera di farmaci a PM anche superiore a 1500 Da Quali sono le caratteristiche ideali per la dializzabilità di un farmaco?

- ridotto legame proteico (> frazione libera del farmaco)
- basso peso molecolare (< 1500 Daltons)
- ridotto volume di distribuzione (<1 L/Kg)
- idrosolubilità

Parametri farmacocinetici, SC e rimozione farmaci in CVVH

Farmaco	Escrez. Renale	Fraz. libera (%)	Vd (L Kg ⁻¹)			Rimozione RRT	
Amikacina	95%	>95%	0.22	586	0.95	S	
Amfotericina B	5-10%	10%	4	926	0.35	Ν	
Cefepime	85%	84%	0.3	481	0.72	S	
Ceftazidime	60-85%	83%	0.28-0.40	547	0.90	S	
Ceftriaxone	30-65%	10%	0.12-0.18	553	0.20	<< altri beta- lattamici	
Ciprofloxacina	50-70%	60-80%	2.5	331	0.70	S	
Fluconazolo	70%	88%	0.70	306	0.88	particolarmente 🛧	
Gentamicina	95%	>95%	0.23	478	0.81	S	
Imipenem/Cilast	20-70 / 60%	79-87% / 56%	0.22 / 0.24	317/380	0.90/0.7 5	S	
Meropenem	65%	98%	0.35	437	1.0	S	
Piperacillina/ Tazobactam	75-90 / 65%	70% / 78%	0.25 / 0.21	540/322	0.82	S (Piperacillina > Tazob.)	
Teicoplanina	40-60%	10-40%	0.5-1.2	1885	0.05	modesta	
Vancomicina	90-100%	50-90%	0.47-1.1	1448	0.70-0.80	S	

Diagnostic Microbiology and Infectious Disease 82 (2015) 92-103

Contents lists available at ScienceDirect

Diagnostic Microbiology and Infectious Disease

journal homepage: www.elsevier.com/locate/diagmicrobio

CrossMark

Magnesele Viteentrickings & Infections 12 June

How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy?

Janattul-Ain Jamal ^a, Bruce A. Mueller ^b, Gordon Y.S. Choi ^c, Jeffrey Lipman ^{a,d}, Jason A. Roberts ^{a,d,*}

* Burns Trauma and Critical Care Research Centre, The University of Queensland, Herston, QLD, Australia

^b Department of Clinical Social and Administrative Sciences, College of Pharmacy University of MI, Ann Arbor, USA

^c Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,


^d Royal Brisbane and Women's Hospital, Herston, QLD, Australia

Table 1

Pharmacokinetic parameters of different classes of antibiotics in critically ill patients receiving different renal replacement therapy modalities.

Drug/(Reference)	Type of RRT/No.	RRT settings		Dose	Pharmacokinetic parameters*							
	of patients (n)	Qb (mL/min)	Qe (ml/min)	Filter material/ surface area (m ²)		Cmax (mg/L)	CountCas (mg/L)	V_d (L)	AUCor (mgh/L)	Cleater (mL/min)	CL ₄₀₀₇ (mL/min)	Sc
Aminoglycosides		-										
Amikacin* (Akers et al., 2011)	CVVH(n = 12)	NA	41.7 ± 18.7	Polysulfone (1.4, 1.5)	15 mg/kg 24H	29.1 ± 14.5	1.5 ± 1.6	70.0 ± 88.3	214.8 ± 113.8^{h}	146.7 ± 148.3	NA	NA
Amikacin (Taccone et al, 2011)	CVVHDF(n=13)	150.0	61.0	Polyacrylonitrile/ Polysulfone (NA)	25 mg/kg (first dose)	70.0 ^b (38.3-94.6)	9.5° (4.1- 29.9)	35.0 ⁵⁴ (15.4- 283.5)	NA	88.2 ^{b.f} (7.0- 231.0)	NA	NA
Amikacin (D'Arcy et al., 2012)	CVVHDF (n = 5)	200.0	50.0-66.7	Polyacrylonitrile (0.6)	0.3-1.5 g 12-54H	48.2 ^b (7.5-68.3)	3.0 ^h (2.1- 16.1)	31 <i>A</i> ± 3.3	NA	58.0 ± 12.3	47.7 ± 6.8	0.8 ± 0
Gentamicin (Petejova at al. 2012a)	CVVH (n = 7)	200.0	67.5	Polysulfone (1.4/1.8)	0.24 g (LD), 0.24-0.32 g 244	8.8 ^b (5.6-12.5)	0.5 ^b (0.4- 1.3)	42.3 ^b (39.6- 49.5)	NA	61.2 ^b (44.1- 107.1)	288 ^b (27.9- 30.6)	0.8

QUESTE GUIDE IN GENERE NON TENGONO IN CONSIDERAZIONE DELL'IMPATTO DELLE DIVERSE CLEARANCE CON CRRT

Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: A multicentre pharmacokinetic study*

Darren M. Roberts, PhD; Jason A. Roberts, PhD; Michael S. Roberts, PhD; Xin Liu, PhD; Priya Nair, FCICM; Louise Cole, PhD; Jeffrey Lipman, MD; Rinaldo Bellomo, MD; on behalf of the RENAL Replacement Therapy Study Investigators CCM 2012

•Wide variability in trough concentrations: 6.7-fold for meropenem, 3.8-fold for piperacillin, 10.5-fold for tazobactam, 1.9-fold for vancomycin, and 3.9-fold for ciprofloxacin.

•Overall, **15% of dosing intervals did not meet** predetermined minimum therapeutic target concentrations, <u>40% did not achieve the higher target</u> <u>concentration</u>, and, during **10% of dosing intervals**, antibiotic concentrations were excessive.

CONCLUSIONI

- Le complicanze (cliniche) durante terapie continue sono frequenti ma...
- INF ...RARAMENTE possono raggiungere elevati livelli di gravità!
- Specialmente quando sono gestite da un team adeguatamente preparato: monitoraggio accurato della tecnica, procedure mediche e infermieristiche standardizzate e specificamente protocollate.
- Ipotensione: soprattutto allo start terapia e in caso di Uf_{netta} eccessiva
- Clearance: alcune importanti sostanze vengono rimosse, più spesso di quanto si pensi in eccedenza (elettroliti e aminoacidi, antibiotici)