Adsorption Techniques

Ghada Ankawi, MD, FRCPC, ABIM

Department of Nephrology, King Abdulaziz University Jeddah – Saudi Arabia

Disclosures

• None

Objectives

- Background
- Different applications
- Lessons learnt from the published literature
- Conclusions

Mechanisms of Solute Removal in Extracorporeal Blood Purification Techniques

Diffusion

Convection

Adsorption

Mechanisms of Solute Removal in Extracorporeal Blood Purification Techniques

Diffusion

Convection

Both molecule/membrane-related factors can limit clearance via these mechanisms

eg. the sieving properties of the membrane, diffusion coefficients of the molecules, temperature, surface area.

Fibers, granules, spheres, flakes powder

Hemoperfusion Extracorporeal Circuit

Chills, Fever, Cutaneous rush Thrombocytopenia, Leucopenia Aluminum Load Ankawi et al. Critical Care, 2018

Methods to Overcome Incompatibility

• Coating the particles with specific biomaterials.

 Separating plasma from red cells and circulating only the separated plasma through the sorbent bed. <u>CPFA</u>

CPFA Circuit

Ankawi et al. Critical Care, 2018

Early Hemoperfusion Treatments (Charcoal sorbent)

Since 1960, sorbents have been used for the removal of uremic toxins, hepatic toxins, drugs, and chemical poisons

igure 3. ACAC hemoperfusion in series with ultrafiltration, no dialysate delivery system is required. Hydroatic pressure from blood pump is sufficient to result in production of ultrafiltrate up to 30 ml/min (adjustable). Iltrafiltrate produced drains through the side tube directly into a collecting beaker.

Slide courtesy; Prof. Ronco

Yatzidis H. Proc Eur Dial Transplant Assoc 1964;1:83–85. Chang TMS Can J Physiol Pharmacol 1969;47:1043–1045.

Clinical applications beyond Poisoning....

Acute conditions Sepsis, pancreatitis, trauma, cardiac surgery

Chronic Conditions (uremic complications)

Others Liver diseases Autoimmune diseases

CytoSorb

Endotoxin

Polymyxin B-

immobilized fiber

Cytokines

Porous polymer beads

HA-330

Endotoxin/Cytokines

Styrene Divinylbenzene Copolymers

Oxiris

Endotoxin/Cytokines

AN69-based membrane, surface treated with PEI and grafted with heparin

LPS Adsorber

Endotoxin

Synthetic polypeptide bound to porous polyethylene discs

HA cartridges

Cytosorb

Study	Patient Population	Mean Treatment Time	Intervention	Inflammatory Medilators	Hemodynam S	nic Mortality	Other Outcomes	Side Effects, Clotting Rate	Study	Patient Population	Mean Treatment Time	Intervention	Inflammatory Medilators	Hemodynamic S	Mortality	Other Outcomes	Side Effects, Clotting Rate	
Huang et al (2010)	N= 44, severe segais		ST4 HP vs ST (2hr session daily X3days),	¥ (148, 1148)	¥	Y ICU (but not hospital/25-	Y ICU LOS (but not hospital	1 gatient with fever in the HP group	Schaûder et el (2012)	N=43 septic patients with ALI		ST4HP vs ST	Y (IL-6, MCP-1, IL-1m, IL-5)	•	N		Drop in PLT(+10%), alb(+5%)	
Liu et el	N=30 MOOS	Cinly one	HP4CIOH	×	N	days mortality) N	LOS)		Semarci et al (2016)	N=37 elective CP2	191 à 56 minutes	ST4HP va ST	N	N	N		-	
(2012)		session of HP	(12h4 2 h HP) va CI/VH (12h)	(11-16, 11-6, TNF)					Friesecke et al (2017)	N=25 septic shock patients		ST + HA	¥ (11-4)	٣			N	
Huang et al (2012)	N=45 ALI/extraguimo nary segaia		ST4 HP vs ST (Zhr session dely X2deys)	¥ (11-1, TNF#)	¥	Y ICU 25-daya	Y PeO2/FIO2 Long Injury score		Schaûder et al (2017)	N=97 severe segsis & AUI or ARDS		ST4HP vs ST	¥ (11-6)		N		Drop in PLT (1 patient in HP)	
							COR score ICU LOS CRRT duration		Kogeimenn et al (2017)	N=16 seglic shock		HA in addition to CRRT		¥	Y Compared to gredicted mortality by		N	
PMX									Nemeth et al	N=54 CHT	203 ± 32	Adsorption vs	N	T	T	Lower RRI	N	
Study	Patient Population	Intervention	inflamm Media	tatory Hemo tors	dynamics	Mortality	Other Outcomes	Side Effects, Clotting rate	(2015)		minutes	controla	(CRP, PCT)			12.5% vs 25% P=0.03		
European Pilot Skudy (2005)	N+35 intra- abdominai segais	Plot vs ST (L)-4 N Y N Cating (24%) an (247 sessor)												PS Absorber				
EUPHAS (2009)	N=64 intra- abdominal segais	PN0(4 ST vs ST hr session 3(2)	(2 ·	- ·		Ŧ		Hypolension (1,5%) Tacycardis (2%)										
Japan Registry (2014) Propensity- matched anaytata	N=390 in each group, Lower Gil tract perforation	1-2 sessions	-		-	N		-	Sludy	Patient Popu	lation II	nievention	Inflammatory Mediatora	Hemodynamic	. Mo	tuky	Side Ell'ecta, Clotting rate	
A200-MIX (2015)	N=232 intra- abdominal septic shock/pertonitis	1-2 2-hr session 2 sessions in ori 53.5 %	• - v		N	N		Hemonhagic episodes 6 (PIVOK) va 3 (controla)	Yarouatovsky et (2009)	al 13 Gram-nej segata gati	pative Atlac enta proce Tona;	o adaorber etunes: (n=6) (myodn (n=7)				-	•	
Japan Registry (2016) propensity- matched analysis	N+975 in each group, Septic shock+ CRRT- requiring AIO	1-2 sessions			N	Ŧ			Ala-Kokko et a (2011)	i 24 septic shock patient with and	2-ho. s veno	r Vencus UPS	×	۲		- La pi	w glatelets , 2 tients requiring git to but no	
EUPHRATES Trial	N=450 septic shock & EAA=0.6	-	-		* · ·	Y (with EAA 0.6- 0.5)		Cotting rate of only 5 %.		endoloxemia						biee	bleeding	
JSEPTIC DIC study Detabase (2017)	N=252 in each group seglic shock	PN00HP valina PN00HP	• •		•	Y		-	Adamik (2015)	52 septic shock gatienst and suspected Gram- negative infection		-2 sessions	Y	Y		N Los	v Districtur	

Lessons learnt

The right window of opportunity Biomarker-driven therapy

EUPHAS

Early post-OP PMX-B HP (2 treatments) vs standard care among 64 patients Increase in MAP, a decrease in VP requirements. Improved survival at 28 days

ABDOMIX

PMX-B HP (2 treatments) vs standard care among 243 patients No significant difference in: 28 or 90-day mortality Organ dysfunction

EUPHRATES

PMX-B HP (2 treatments in addition to standard of care) vs sham HP among 450 patients No significant difference in 28-day mortality (37.7% in the PMX group vs 34.5% in the controls (P= 0.92))

EUPHRATES

Post hoc analysis (*D. J. Klein et al, Intensive care medicine*) → patients with endotoxin activity of 0.6–0.89

10.7% risk reduction in mortality [OR 0.52, 95% CI (0.27, 0.99), P=0.047]

Longer 28-day survival time Greater change in MAP

Catching up the patient early on (as guided by endotoxin assays) before endotoxin-mediated damage may improve the effectiveness of sorbent therapy

Its impact on efficiency of sorbent therapy

Technical aspects

Alteration of the anticoagulation requirement in the circuit

Polymyxin B immobilized fibers column EUPHAS ABDOMIX EUPHRATES

- High rate of cartridge clotting treatment failure
- Incomplete treatment in 38 % of patients.
- Two sessions in only 8/119 (69.8 %) patients

Alteration of the anticoagulation requirement in the circuit

CPFA

The **COMPACT** trial 192 patients CPFA plus standard of care vs standard of care

Nearly half of the patients in the CPFA arm did not reach the planned dose.

No difference in hospital mortality (controls (47.3%) vs CPFA (45.1%); p = 0.76)

Clotting of the circuit was the cause in 48% of cases

Treatment duration as an example

Variability in prescription

Cytosorb in the context of cardiac surgery

Träger et al. Int J Artif Organs, 2016 16 patients with severe post-CPB SIRS/AKI Reduction in IL-6/IL-8 Improvement of hemodynamics

Bernardi et al. Critical Care, 2016 Elective CPB surgery

Träger et al. Int J Artif Organs, 2016 39 patients with IE undergoing CS with HP vs. 28 historical patients with IE undergoing CPB with no HP No differences in: IL-6 level, VP requirement 30-day mortality

> Reduction in cytokines Improvement of hemodynamics

Cytosorb in the context of cardiac surgery

Träger et al. Int J Artif Organs, 2016 16 patients with severe post-CPB SIRS/AKI

> Bernardi et al. Critical Care, 2016 Elective CPB surgery

Träger et al. Int J Artif Organs, 2016 39 patients with IE undergoing CS with HP vs. 28 historical patients with IE undergoing CPB with no HP Treatment duration, (average 191 +/- 56 min, compared to treatment lasting for up to 7 days in other studies)

Drugs (specifically antibiotics) !

Undesired losses

Drug Removal

In vitro Removal of Therapeutic Drugs with a Novel Adsorbent System (Ronco et al, Blood Purification, 2002)

✓ Betasorb for ß2- microglobulin (11.8 kD) removal.

Novel uses

SAVE UK Trial M-2016-313

Research type

Research Study

Full title

Proof-of-Concept Trial on Selective Removal of the Antiangiogenic Factor Soluble Fms-like Tyrosine Kinase-1 (sFlt-1) in Pregnant Women with Preeclampsia via Apheresis Utilizing the Flt-1 Adsorption Column (SAVE UK Trial)

Conclusions

- ✓ Adsorption represents an interesting technique for blood purification.
- \checkmark Overall, it's considered safe with no significant side effects.
- It's associated with reduction in inflammatory mediators, improvement in hemodynamics, but not mortality.
- Technical aspects, and variability of prescription may have an impact on its effectiveness.
- ✓ Undesired losses remains a concern and should be accounted for.
- Biomarker-driven therapy, may be an attractive approach to help identify which patients would benefit the most.
- ✓ Novel uses continue to evolve and may be promising.

Questions?

Thank you

