

#37Vicenzacourse

Evolution of CRRT Technology

Claudio Ronco

University of Padova – Chair of Nephrology
Department of Nephrology Dialysis and Transplantation
International Renal Research Institute
St. Bortolo Hospital, Vicenza - Italy

Claudio Ronco

Department of Nephrology Dialysis and Transplantation International Renal Research Institute St. Bortolo Hospital, Vicenza - Italy

DISCLOSURE

Consultant: Astute, Baxter, OCD, Medtronic, Asahi Medical, Jaffron,

Advisory Board: GE, Kaneka, Cytosorbents, Abbot, Biomerieux

Speaker Bureau: Toray, Estor, FMC, Bellco, Ferrer, Adcock, Otsuka

40 years of CRRT

HOSPAL PRISMA

Features:

Self loading of lines and autopriming of the circuit. Treatments performed: CVVH-CVVHD - CVVHDF with large capacity of fluid handling. Large display for operations.

From ECU to Omni: a long way

From ECU to Omni: a long way

Techniques

Technology in CRRT

Time

Metabolism and Volume

Leading Science of CRRT in Vicenza

First Adult CAVH in Vicenza 1977

First Neonate CAVH in Vicenza 1982

40 years of Pediatric CRRT

In Vitro Studies on minifilters and new fiber

1979

First world treatment of neonate with CAVH In Vicenza

1982

Pediatric circuits in adult machines

2002

New project **CARPEDIEM**

2010

CVVH-D PE - BE

2017

Search fo minifilters And visit to Amicon

First circuit for CAVH in neonate

CAVH + ECMO Uf control S. Mini Filter plus and First CAVHD

2013

First world treatment with CE-Marked **CARPEDIEM** licensed for human use Vicenza 2013

From a sketch and project to the Final Machine

The NSI Alliance

The Future of CRRT

PATIENT IDENTIFICATION

Extracorporeal circuits

- Antithrombogenic
- Anti microbial properties
- Temperature self adjusting
- Collapsable (minimum storage volume)
- Biodegradable (minimum wasting)

Devices, MOST and ECOS

- Fluid Balance control
- New Membranes
- New sorbent devices
- Wearable devices
- Population.specific therapies

Multiple Organ Support in Critical Illness and Sepsis

AKI & Sepsis

Liver Support

Heart Failure

The porosity of the membrane

Effects of Surface Modification

Biocompatibility, Permeability, Non-fouling effect

Water sparing technologies

(Blue Planet Dialysis)

- 1.Regeneration
- 2. Double filtration
- 3. Physical-chemical processes
- 4. Recirculation
- 5. Sorbent technologies

Patient/Machine Card

Resident Medical Record

Virtual private Network With encrypted tunnel

Cloud Connectivity System

Machine Data Only

Filter Life

Treatment Downtime

Prescribed & Delivered Dose

Fluid Removal Parameters

Alarm Management

Summary

Prismaflex CRRT Management Report Sample - Standard - Citrate

as of May 2016

Q. 1) What is our average filter life?

Q. 2) How much treatment time is lost?

Q. 3) How are we tracking toward our dosing target?

Q. 4) How much fluid was removed per TreatmentDay?

Q. 5) How many access/return (AR) alarms do we have?

May at a Glance

Machine & EMR Data

Timing of CRRT Initiation

Fluid Overload and Management, Ventilator and Vasopressor Duration

CRRT Initiation versus KDIGO AKI Stage

Frequency of RRT After CRRT

Summary

Gotham City Health Center

An integrated and multidisciplinary approach

There is a multiple organ involvement in critical illness. Specific clinical conditions may begin with impaired function of one organ, but subsequent or immediate dysfunction in other organs can often happen (cardio-renal, heart-lung disorders, hepato-renal and cardio-pulmonary renal syndromes).

The diagnostic as well as therapeutic approach to the patient should be multidisciplinary and complete (holistic?).

An integrated and multidisciplinary approach

Patients who display clear indication for ECMO and are undergoing such a complex therapy, may require further organ support with the addition of renal replacement therapy by dialysis, liver support, hemoperfusion for detoxification and so on.

There is a clear need to explore the organ cross talk and the interactions between different organ systems involved in critical illness.

At the same time, extracorporeal support and organ replacement may become a more complete therapy if different functions are combined in a fully integrated hardware.

An integrated and multidisciplinary approach

Possible errors and negative effects induced by adoptive technology where different organ support systems are utilized in a non-integrated approach make extracorporeal therapies dangerous and inaccurate.

Fluid balance, solute removal, CO2 removal, aromatic aminoacid removal, electrolyte and acid base equilibration, blood detoxification and oxygenation should be definitely considered a continuum where the artificial organ crosstalk is constant.

Variations in CO2 must take into account the use of buffers in dialysis or the application of citrate as anticoagulant for a adequate equilibrium of acid-base.

An integrated and multidisciplinary approach

The future will probably lead to a unified hardware with special circuitry that will allow to perform all different organ support therapies on demand, simply escalating or de-escalating the complexity of the system.

From ECMO and CRRT, a patient may be progressively moved to ECCO2R and intermitted dialysis and finally even being discharged with a softer form of organ support including chronic dialysis and respiratory dialysis in case of non recovery or progression towards chronic illness.

An integrated and multidisciplinary approach

Organ crosstalk required a multidisciplinary approach to the critically ill patient. If Multiple Organ support therapy (MOST) is applied, artificial organ crosstalk should also be considered by a task force of experts in different disciplines to avoid negative interactions and unwanted side effects. An integrated monitoring of patients, chemistry and machine parameters will offer the basis for a smart biofeedback leading to correction in prescription and delivery of extracorporeal organ support.

Sepsis

Extracorporeal liver support

Risk of

- Oxygenator clotting
 - Pulmonary embolism during VV-ECMO
 - Arterial embolism during VA-ECMO

ECCO₂R

Risk of

- Oxygenator clotting
 - Pulmonary embolism during AV-ECCO₂R

 Loss of micronutrients / antibiotics / catecholamines

 Volume expansion with necessity of UFR adjustment

 Allergic reaction to substitute solution

RRT

RRT-related alterations

- Loss of micronutrients / antibiotics / catecholamines
- · Hypophosphataemia
- Risk of hemolysis, thrombosis and DIC when connected to ECOS circuits
- Risk of Na overload, hypocalcaemia, metabolic alcalosis/acidosis during RCA

Interventions to prevent hemodynamic instability during RRT

- UFR adjustment via monitoring hematocrit changes
- Dialysate Na modeling
- · Dialysate cooling

Plasmapheresis

Organ Crosstalk

The case of Heart, Lungs and Kidney

From Native to Artificial Organ Crosstalk

